
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Software Business and Engineering Institute

Matti Kannala

Escape Route Analysis Based on Building
Information Models: Design and Implementation

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology.

Helsinki, December 7, 2005

Supervisor: Professor Reijo Sulonen
Instructor: M.Sc. (Tech.) Pasi Paasiala

HELSINKI UNIVERSITY OF
TECHNOLOGY

ABSTRACT OF THE MASTER’S
THESIS

Author:
Title of the thesis:

Date:

Matti Kannala
Escape Route Analysis Based on Building Information Models:
Design and Implementation
December 7, 2005 Number of Pages: 52

Department:
Professorship:

Department of Computer Science and Engineering
T-76 Development of Digital Products

Supervisor:
Instructor:

Prof. Reijo Sulonen
M.Sc. (Tech.) Pasi Paasiala

Current development in building design is leading to a situation where buildings are
designed with three-dimensional intelligent objects. Since these designs can also be
shared using open standards, the possibility has emerged of using the designs to automate
tasks that have traditionally been manual. One such task is escape route analysis, which is
performed against building fire codes. This thesis defines the set of information that is
needed to automatically perform such analysis, the methods for performing the analysis,
and the means for presenting the results of the analysis.

Within this thesis, an escape route analysis module is implemented and included in the
Solibri Model Checker software product. The work consists of the fundamental activities
of software process: study, definition, design, implementation, and testing. The definition
is based on studies of building information modeling (BIM) and escape route analysis.
The module was designed using the UML modeling language. The quality of the
implementation was assured by continuous automatic testing and by tools that analyze the
source code. Finally the module was evaluated against the defined requirements.

The work shows that current building information models have adequate information to
automatically check escape routes against the most essential regulations of the building
fire codes. Currently there remains a lot of variation in the information content in the
building information models. Much of the information is implicit. It appears only in the
geometry of building components. In order to process geometric information the thesis
introduces several geometry algorithms. The three most notable of these are: an algorithm
for decreasing or increasing polygons in size, an algorithm for merging spaces, and an
algorithm for creating compartments.

Keywords: algorithm, automatic testing, building information modeling, escape route,
fire code, geometry

 i

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Tekijä:
Työn nimi:

Päivämäärä:

Matti Kannala
Rakennusten tuotemalleihin perustuvan poistumistieanalyysin
suunnittelu ja toteutus
27.4.20065 Sivuja: 52

Osasto:
Professuuri:

Tietotekniikan osasto
T-76 Digitaalisten tuotteiden kehittäminen

Työn valvoja:
Työn ohjaaja:

Prof. Reijo Sulonen
DI Pasi Paasiala

Rakennusten suunnittelu on kehittymässä suuntaan, jossa rakennukset suunnitellaan
kolmiulotteisilla älykkäillä objekteilla. Koska nämä suunnitelmat voidaan jakaa myös
avointen standardien avulla, on suunnitelmien avulla mahdollista automatisoida tehtäviä,
jotka on perinteisesti tehty käsin. Yksi sellainen tehtävä on rakennusmääräysten
mukainen poistumistieanalyysi. Tämä opinnäytetyö määrittelee informaation, jota
tarvitaan analyysin suorittamiseen, menetelmät analyysin tekemiseen ja tavat analyysin
tulosten esittämiseen.

Opinnäytetyössä on toteutettu poistumistieanalyysimoduuli Solibri Model Checker-
tuotteeseen. Työ koostuu tavanomaisista ohjelmistoprosessin toiminnoista: tutkiminen,
määrittely, suunnittelu, toteutus ja testaus. Työssä tutkittiin tuotemallinnusta ja
poistumistieanalyysia, minkä perusteella tehtiin määrittely. Moduuli suunniteltiin UML-
kuvauskielellä. Toteutuksen laatu varmistettiin jatkuvalla automaattitestauksella ja
lähdekoodin analysointityökaluilla. Lopulta moduuli arvioitiin määriteltyjen vaatimusten
avulla.

Työ osoittaa, että nykyiset rakennusten tuotemallit sisältävät riittävän informaation
automaattiseen tärkeimpien paloturvallisuusmääräysten mukaiseen poistumisteiden
tarkastamiseen. Koska rakennusten tuotemallien informaation sisältö vaihtelee paljon, on
suuri osa informaatiosta pääteltävä rakennusosien geometrian pohjalta. Geometrisen
informaation käsittelyä varten työssä esitellään useita geometria-algoritmeja. Kolme
merkittävintä niistä ovat algoritmi monikulmion pienentämiseen tai suurentamiseen,
algoritmi tilojen yhdistämiseen ja algoritmi osastojen luomiseen.

Avainsanat: algoritmi, automaattitestaus, geometria, palomääräykset, poistumistie,
tuotemallinnus

 ii

Acknowledgements

This work has been carried out at Solibri Oy. I would like to thank my employer Solibri
Oy for providing me with an interesting topic for my thesis. I also wish to thank all the
people at Solibri Oy who have helped during this thesis.

My gratitude goes to Professor Reijo Sulonen and my instructor Pasi Paasiala for guidance
during this work. Both of them have provided helpful comments and suggestions during
the writing process.

I wish to thank all those people who have somehow contributed to this thesis.

Finally, I would like to thank my wife Minna who encouraged and helped me in
completing this work.

Helsinki, 27 April 2006

Matti Kannala

 iii

Contents

Acknowledgements..iii
Contents ... iv
List of Abbreviations ...vi
List of Symbols...vii
1 Introduction... 1

1.1 Background... 1
1.2 Objectives ... 1
1.3 Methods .. 1
1.4 Scope... 2
1.5 Outline of the Thesis... 3

2 Building Information Modeling.. 4
2.1 Introduction... 4
2.2 Evolution of Design Practices... 5
2.3 Use Cases.. 6
2.4 Benefits ... 7
2.5 Challenges... 7
2.6 IFC .. 9

3 Solibri Model Checker.. 11
3.1 General.. 11
3.2 User Interface.. 11
3.3 Constraints .. 12
3.4 Workflow.. 13

4 Escape Route Analysis ... 15
4.1 Introduction... 15
4.2 Definitions .. 15
4.3 Evacuation Models ... 17
4.4 Building Fire Codes .. 17

4.4.1 Overview... 17
4.4.2 Relevant Properties ... 18

4.5 User Studies .. 20
5 Requirements Engineering.. 22

5.1 Introduction... 22
5.2 Requirements Definition... 23
5.3 Requirements Management .. 23
5.4 Functional Requirements .. 23

 iv

5.5 Non-functional Requirements... 25
6 Design and Implementation.. 26

6.1 Introduction... 26
6.2 High Level Architecture ... 27
6.3 Plug-in Modules.. 28

6.3.1 Overview... 28
6.3.2 Model Search Tree Plug-in... 28
6.3.3 Layout Plug-in .. 29
6.3.4 Route Plug-in .. 32
6.3.5 Compartmentation Plug-in.. 35

6.4 Constraint Module .. 37
6.4.1 Overview... 37
6.4.2 Checking ... 38
6.4.3 Constraint Parameter View... 39
6.4.4 Constraint Results View ... 40
6.4.5 Constraint Tools View.. 42

7 Testing and Quality Assurance... 43
7.1 Introduction... 43
7.2 Automatic Testing .. 43
7.3 Acceptance Testing... 44
7.4 Quality Assurance... 46

8 Conclusions and Future Work .. 47
8.1 Overview... 47
8.2 Results... 47
8.3 Future Work.. 48

References... 49
Appendix.. A

 v

List of Abbreviations

AEC Architecture, Engineering and Construction
AIA American Institute of Architects
API Application Program Interface
CAD Computer-Aided Design/Drafting
CAG Constructive Area Geometry
CCCC C and C++ Code Counter
CSG Constructive Solid Geometry
CSM Constraint Set Manager
BIM Building Information Modeling
BSP Binary Space-Partitioning
FM Facilities Management
GSA General Services Administration
IAI International Alliance of Interoperability
IDE Integrated Development Environment
IFC Industry Foundation Classes
NFPA National Fire Protection Association
NURBS Non-Uniform Rational B-Splines
OOCAD Object-Oriented CAD
PC Personal Computer
PDF Portable Document Format
RE Requirements Engineering
RTF Rich Text Format
SAE Solibri Application Engine
SAF Solibri Application Framework
SIL Solibri Issue Locator
SMC Solibri Model Checker
STEP Standard for The Exchange of Product model data
UI User Interface
UML Unified Modeling Language
XML eXtensible Markup Language
XOR Exclusive-Or

 vi

List of Symbols

A(P) Area of a polygon
A(p, p, p) Area of a triangle
C Number of building components in the model
E Number of edges in a polygon
S Number of segments
N Number of nodes in the octree
O(z) Big O Notation
p Point
P Polygon
t Average time
v Vertex
V Number of vertices in a polygon
x X-coordinate
y Y-coordinate

 vii

1 Introduction

1.1 Background

Current development in building design is leading to a situation where buildings are
designed with three-dimensional intelligent objects. Since these designs can also be shared
using open standards, the possibility has emerged of using the designs to automate tasks
that have traditionally been manual. One such task is to ensure that a building has a safe
escape route from each room. In this thesis this task is called escape route analysis. The
attributes that affect the analysis are given in building fire codes, which are set and
enforced by local authorities.

The aim of this thesis is to define the set of information that is needed to automatically
perform the escape route analysis, the methods for performing the analysis, and the means
for presenting the results of the analysis. From the user point of view the aim is to save
time by providing an easy way to check building escape routes against the building fire
codes.

This thesis has been researched at Solibri Oy. The results of this work are included as part
of the Solibri Model Checker software product. They include help material that is
available in the Solibri Model Checker online help.

1.2 Objectives

The main objective of this work was to implement an escape route analysis module, which
satisfies most of the current users' and customers' needs and is easily expandable to fulfill
future needs.

1.3 Methods

Many software processes comprise the basic activities of the waterfall model: study,
definition, design, implementation, and testing. In the software process of this project
these activities were practiced in parallel. The methods used in the process are described
below.

 1

The study was started at the beginning of the project and continued throughout the work. It
is based on literature and interviews.

The definition began with collecting requirements through consulting with stakeholders,
studying documents, and brainstorming. The requirements were documented and managed
using a spreadsheet program. The priorities for the requirements were calculated simply
by multiplying the business value by the estimated implementation effort.

The design is based on these collated requirements. The architecture was designed and
documented using the Unified Modeling Language (UML) and design patterns. The high
level architecture was designed according to the Solibri Model Checker architecture.

The module was implemented using the Java programming language and the latest
development tools. A substantial part of the source code was programmatically generated
from the UML diagrams. Performance critical algorithms were optimized using Java code
profiler software. The quality of source code was assured using a source code analysis
tool.

Testing had an important role in the software process. Unit tests were written for non-
trivial code. All unit tests were automatically run and reported nightly. Automatic module
testing was used to test the module against the requirements. The implemented module
was evaluated against the requirements using two real life building information models
obtained from customers. Non-functional requirements (e.g. performance and robustness)
were tested using several large building information models.

1.4 Scope

This thesis can be divided roughly into five parts: study, requirement engineering, design,
implementation, and testing. The main emphasis is on design and implementation. The
study part describes building information modeling (BIM) and escape route analysis. The
requirement engineering part presents the requirements and the methods used on a general
level. The design and implementation part includes high-level descriptions of the essential
algorithms. The testing part introduces different methods used in testing and quality
assurance. This thesis excludes data related to requirement prioritization, details of the
architecture of the Solibri Model Checker (SMC), source code for the module, and most of
the testing results.

 2

1.5 Outline of the Thesis

This section describes the structure and contents of this thesis. The thesis comprises eight
chapters and an appendix.

Chapter 1 introduces briefly the project background, objectives, methods, scope, and
outline.

Chapter 2 studies building information modeling.

Chapter 3 introduces the Solibri Model Checker product, the platform for the implemented
module.

Chapter 4 studies building escape route analysis from evacuation model and building code
viewpoints. The emphasis is on the latter. The chapter also introduces definitions and user
studies.

Chapter 5 introduces the collected requirements and the methods used in requirements
engineering. The requirements are listed in a short form in tables.

Chapter 6 describes the design and the implementation of the escape route analysis
module. The high-level architecture of the Solibri Model Checker is also introduced.

Chapter 7 explains how testing and quality assurance were implemented. It also presents
some results of the acceptance testing.

Chapter 8 is the conclusion of this work. Future work is also discussed in this chapter.

Appendix contains the UML class diagrams of the implemented modules.

 3

2 Building Information Modeling

2.1 Introduction

The term Building Information Modeling (BIM) was first introduced in 2002 by Autodesk
to describe the new technology of the Revit CAD solution. Later on other CAD vendors
such as Graphisoft and Bentley started to use the same term to describe their solution as
well. Below are two definitions for BIM:

“Building information modeling (BIM) is a building design and documentation
methodology characterized by the creation and use of coordinated, internally
consistent computable information about a building project in design and
construction.” (Autodesk 2005)

“A computable representation of the physical and functional characteristics of a
facility and its related project/life-cycle information using open industry standards
to inform business decision-making for realizing better value.

BIM can integrate all the relevant aspects into a coherent organization of data that
computer applications can access, modify and/or add to, if authorized to do so.”
(Facilities Information Council 2004)

Building Information Modeling is an approach that offers access to building information
through the three major phases of the building life cycle: design, construction, and
management. While the adaptation of BIM is challenging, it offers clear advantages for
each of these phases and creates a possibility for new services such as the automated
escape route analysis implemented in this work. BIM is not a technology, but it can be
achieved using a set of interoperable technologies. Different technologies utilize the
reliable, high quality, and well-coordinated information stored in the integrated data
model. The building model is revised throughout the whole building process resulting a
thorough representation of a new building.

The data model of a BIM solution consists of building components and their relationships
with each other. The building components have information about their material, purpose
(e.g. load bearing and fire protecting), and physical quantities (e.g. length and width).
Physical components such as walls, slabs, beams and columns have also 3D

 4

representations. In the best case the model has sufficient information for a range of
purposes: 2D documentation, 3D visualization, structural analysis, cost estimation,
facilities planning, asset management, and so on. Theoretically, a building information
model provides a single, logical, and consistent source for all information associated with
the building (Howell & Batcheler 2005).

2.2 Evolution of Design Practices

About 30 years ago nearly all drawings were done with ink or pencil on paper. Major
changes meant recreating the drawing from scratch. CAD (Computer-Aided
Design/Drafting) automated the task of drafting. Turing award winner Ivan Sutherland
produced the innovative program Sketchpad in 1963. It is considered the first step of
CAD. CAD applications improved productivity. Drawings were still nothing but dummy
2D graphics: lines, circles, ellipses, hatches, and text. Building elements such as walls
were represented as 2D lines. It was possible to separate lines of walls to their own
drawing layer but nothing more. The information was in such a form that its meaning
could only be interpreted by human.

Charles Lang's team (including Donald Welbourn and A. R. Forrest) began research into
3D CAD software in 1965. The commercial benefits of 3D CAD began to appear in
1970s. The significant development in 3D modeling was the introduction of constructive
solid geometry (CSG) (Requicha 1977). The CSG model consists of a set of Boolean
operations applied to half-spaces. Another important step in 3D modeling was the
introduction of non-uniform rational B-splines (NURBS) invented by Ken Versprille. The
first NURBS modeler for PC (personal computer) NöRBS developed by CAS Berlin was
available in 1993. The emergence of 3D CAD initially focused almost entirely on creating
geometry to support visualization, and subsequent advances concentrated on creating
realistic rendering and lighting effects (Howell & Batcheler 2005).

There was also a need for non-graphic information. Object-oriented CAD (OOCAD)
systems replaced graphic objects with building elements. The building elements have 3D
geometry and a capability to store non-graphic information. Relations between building
elements and abstract objects such as spaces made the system more intelligent. A change
to an element could now automatically have an effect on other elements through
relationships. This was impossible in previous CAD systems. This kind of parametric
building modeling technology is separated from OOCAD in Autodesk white paper
(Autodesk 2003), but in general terms it is OOCAD with very sophisticated relations
between building objects.

The earlier development steps were separated by technology (ink to CAD, 2D to 3D),
whereas the newest step – BIM – is an overall concept that emphasizes information
sharing between the different software that are used during the building life cycle, from
initial design to demolition. The term was introduced by Autodesk in 2002. Figure 2-1
shows the described design practices on a time line. The old practices are still in use and
the popularity of the new paradigms is growing.

 5

Ink or Pencil
2D CAD

3D CAD
OOCAD

BIM

1960 1970 1980 1990 2000

Ink or Pencil
2D CAD

3D CAD
OOCAD

BIM

1960 1970 1980 1990 2000
Figure 2-1 Evolution of Design Practices

Currently BIM hotspots are the Nordic countries and Singapore, but BIM is also gaining
popularity elsewhere, in Western Europe and the USA. The U.S. General Services
administration (GSA) has stated that all AEC firms dealing with GSA will have to include
a building information model as part of their work proposal. This year the American
institute of architects (AIA) honored three projects with the first annual BIM award.

One of the most recent surveys is conducted by GeoPraxis in 2004 (GeoPraxis 2004). The
survey investigated the use of CAD systems in the construction industry. Most of the 687
respondents were architects, designers or CAD drafters from the USA. It was encouraging
that 50.9% of the respondents used a BIM application. The top three BIM applications
were Graphisoft ArchiCAD (20.8%), Autodesk Architectural Desktop (13.0%), and
Autodesk Revit (13.0%). However, 14.4% of respondents did not produce 3D models or
building information models at all.

2.3 Use Cases

This section introduces shortly four common use cases of building information modeling.
The escape route analysis module implemented in this thesis is useful in two use cases:
building design and automated building code checking. For each of the four use cases an
example is given.

Building design is the first use of BIM. Intelligent components can automate simple tasks
and design work flows easily between different design disciplines, since the information is
stored in a non-proprietary format. A good example is the Eureka Tower (located in
Melbourne), which is one of the largest projects designed using the principles,
methodology, and processes of BIM (Khemlani 2004). In the project, automated
documentation allowed everyone to concentrate on the design, which enhances
cooperation between employees.

Facilities management (FM) is the management of buildings and services. It deals
mostly with building spaces (rooms) and their related equipment. The expenses of
managing a building during its lifetime are greater than its design and construction costs.
A BIM-based FM solution helps in maintaining information about the building. For
example, Frankfurt airport is managed by a Bentley Facilities solution. The BIM solution

 6

allows access to the information on spaces, piping, and cabling. The system helps to keep
expensive downtime to minimum.

Quantity take-off is one of the most frequently implemented BIM use cases. It is the
process of automatically creating the list of quantities in a building design. By combining
quantity information with building component unit costs, it is possible to create a fast and
reliable cost estimate for the building. In traditional quantity take-off, a substantial part of
the process is manual and laborious. The current trend is to automate the process as much
as possible. Graphisoft’s Virtual Constructor is a good example of a product where
quantity take-off and cost estimation are essential part of modeling software.

Automated building code checking is a promising use case. Construction has long been
controlled by legislation. Ensuring that a building design follows all building codes is a
major undertaking for an architect. Once a BIM model contains all the information
required for code checking, it is possible to computerize the checking, which can save a
lot of work. Time savings can be particularly substantial if a code violation is found before
the design is sent to the building authorities. Building authorities, too, can benefit from
automation. Automated building code checking is becoming a reality. The Singapore
government has recently unveiled an automated national building code compliance system
(NIBS 2005). The Singapore system allows building designers to check their plans against
the building codes and submit them to the building authorities for approval.

2.4 Benefits

There is a consensus on the importance of BIM and its potential benefits. There is not yet
much scientific research on BIM, but a number of successful BIM projects in the building
industry show that BIM has obvious advantages when compared to traditional methods.
Most of the recent writings of the AEC field experts and whitepapers of CAD vendors
give a positive picture of BIM. The following list of the benefits is collected and refined
from BIM project success stories, the writings of experts, and CAD vendor whitepapers:
higher productivity, higher quality, better coordination, central information, consistency,
accessibility, versatility, and new services.

2.5 Challenges

Adoption of BIM is very challenging because building industry firms are relatively small
and contracts are often made for single projects. The agreements between different parties
state clearly the responsibilities of each party. Where BIM propagates for sharing of
information, the agreements inhibit sharing of responsibility. Quite often price is the most
important selection criteria when choosing subcontractors. This often leads to sub-
optimally performing project teams.

A panel of CAD vendors and end users at the Technology for Construction Executive
Forum held in 2004 brought out the following obstacles to BIM implementation:
globalization, corporate culture, data storage costs, lack of standards, and interoperability
(Ferris 2005). David Becker holds that the fragmentation of the building industry and
current building processes are also challenges for BIM (Becker 2004).

 7

Globalization is challenge, because many firms have offshore business, often in regions
that do not have the technology to support BIM.

Corporate culture is one of the biggest challenges. Project participants such as estimators
and draftsmen are used to doing their jobs in a particular way. They may not want to
change their way of working or trust the data derived from a building information model.
The employees may also fear losing their positions as experts when their skills become
obsolete.

Data storage costs increases as the amount of information grows. The increased
collaboration and regulatory requirements to save data also serve to grow the costs. The
most used IFC exchange format is uneconomic. The size of a small building model
without details is normally several megabytes. Currently the IFC standard is extending,
which means that models become even bigger.

Lack of standards is one of the reasons for the variable quality of building models. There
are no agreements as to what information must be included in the models. Different parties
are creating guidelines to solve the problem, but they are not yet widely adopted. In
Finland the ProIt project recently published guidelines for creating better building models
(ProIt 2004, ProIt 2005).

Interoperability is a key issue because each building project requires the use of many
software applications. One solution is a standardized format for building models.
Currently the IFC exchange format studied in the next section (2.6) is the most promising.
More applications should support IFC to make interoperability a reality.

Fragmentation of building industry has led to technological inconsistency across
different segments. Leading-edge architects may produce 3D models, but they have to
deliver 2D paper drawings to city planning departments. A lot of information is lost in
conversions.

Current building processes are full of old rules that define the responsibilities of
employees and organizations. Current organizational structures have a lot of inefficiency.
BIM is requiring architects and designers to perform tasks that were typically left to other
stakeholders, but changing the rules is hard. Quantity surveyors are afraid of losing their
work when quantities are automatically listed by software.

In this project the biggest challenge was the varying quality of building information
models. It may be a consequence of poor modeling standards or knowledge. In most of the
tested real life building models there was decent modeling of the geometry of building
elements but the relations between elements were occasionally missing. Some of the
building models had also building elements that were of the wrong type e.g. doors were
modeled as windows. Because of these kinds of modeling errors the escape route analysis
module has to use geometry as a primary information source. This raises the complexity of
the analysis significantly.

 8

2.6 IFC

Each major CAD solution has its own BIM formats and a set of compatible building-
related applications. Smaller CAD vendors lack resources and they tend to integrate third
party applications. So there is a need for standard BIM format that could support
interoperability across individual, discipline-specific applications. (Khemlani 2003)

Industry Foundation Classes (IFC) is an open international standard managed by the
International Alliance of Interoperability (IAI). IAI is an alliance of organizations within
the construction and facilities management industries dedicated to improving processes
within the industry through defining the use and sharing of information. Organizations
within the alliance include architects, engineers, contractors, building owners, facility
managers, manufacturers, software vendors, information providers, government agencies,
research laboratories, universities and more. (IAI International 2004)

The IFC model is expressed in EXPRESS language, which is the data modeling language
of STEP (Standard for the Exchange of Product model data, ISO 10303) and standardized
as ISO 10303-11. EXPRESS consists of language elements which allow unambiguous
data definition and specification of constraints on the data defined and by which aspects of
product data can be specified. It deals with data types and constraints on instances of the
data types. (ISO 10303-11 1994)

The IFC high level architecture diagram is illustrated in Figure 2-2. The IFC model is
divided into four layers: domain, interoperability, core, and resource layer. Each layer
contains categories which define sets of entities. There are 623 entity definitions in the
IFC2x2 model. Entities on layers can only be related to or reference an entity at the same
or lower layer, but not one at a higher layer. It means that a boiler in the HVAC category
on domain layer can be related to a wall in building element category on interoperability
layer, but the wall cannot be related to the boiler.

 9

Figure 2-2 The overall architecture of the IFC model (IAI International 2003)

The analysis of this thesis uses entities on the interoperability layer and on lower layers.
Essential entities for the escape route analysis of this thesis are space, wall, door, opening,
and stair. Spaces are the most central entities for the analysis. The location and geometric
representation of a space define the location for the routes. The space identifiers: type,
name, and number are used in defining occupancies and reporting results. The location
and geometry of walls are mainly used in compartmentation and combining partial spaces.
The doors and openings are used in connecting routes between spaces through walls. The
stairs are used in vertical connection of spaces. Use of relations between entities is
avoided in the analysis because they are often lacking or faulty. Entities from the
plumbing fire protection domain are not used, because currently there is only one fire
protection entity specified. There are some projects in IAI that are related to escape routes.
A project named Escape Route Planning (AR-4 1998) was started in 1998 and is currently
on hold and looking at resources to start again. Another project named Code Compliance
Support (CS-4) was completed in 2003, and fire and personal safety was one of the areas
that had a particular focus. The capabilities of some existing entities have been extended
and support for alarms, controls, drainage etc. has been added to the domain layer.

 10

3 Solibri Model Checker

3.1 General

Solibri Model Checker (SMC) is a commercial design spell-checking software product for
the Architecture Engineering Construction (AEC) and Facilities Management (FM)
industry. SMC can check building information models in the IFC format or models
imported directly from ArchiCAD. SMC is a stand-alone application and is compatible
with Microsoft Windows and Apple Mac OS X. SMC is localized into English and
Finnish languages and metric and imperial units.

Solibri Model Checker adds value throughout the life cycle of the building. It is a valuable
tool for architects, construction companies, and building owners. The users can check
design cost-effectively, deliver high quality building information models and obtain
reliable cost estimates and key factors.

In this thesis Solibri Model Checker provides the software environment in which the
escape route module operates. SMC provides an internal object-oriented representation of
the building information model that is used as source information for the escape analysis.

3.2 User Interface

The user interface (UI) of SMC is shown in Figure 3-1. The functionality of the SMC is
arranged in different views. The UI of each view consists of a toolbar and a panel. The
user can resize, change location, close, and open them. The user interface includes two
main perspectives: SMC, which is the default perspective, and CSM (Constraint Set
Manager). Perspectives are visual containers for a set of views. The UI of CSM is not
introduced in this thesis because it is not relevant to this work. The perspectives and view
are controlled from the Window menu.

 11

Figure 3-1 The user interface of Solibri Model Checker 3.0

The building information model is visualized in the 3D view, where the model can be
easily navigated and visualized in many different ways. Checking of the model is based on
rules defined by constraints which are shown in the checking view in top left corner. The
constraints are introduced in more detail in the next section 3.3. The lower right corner has
four views: parameters, results, tools, and report. Each of these views contains specific
information about the constraint selected in the checking view. Information on the
currently selected building element, constraint, constraint result, and other objects is
shown in the info view in the bottom left corner. The default UI layout includes the model
tree view for browsing the model and the selection view for handling selections. The filter
view and compartmentation view are not visible by default. The compartmentation module
is a part of this work and is discussed in section 6.3.5.

3.3 Constraints

SMC checks and analyses the product model using constraints. Constraints are compact
software modules that contain checking parameters and logic. Constraints are configured
based on the user requirements. For example, the maximum allowed escape route length is
adjusted based on local requirements. Several constraints are combined into constraint
sets. Constraints sets can also nest other constraint sets. Constraint sets are stored in files
that can be created and modified in the CSM perspective. In the SMC perspective the
constraint sets are located in the checking view (Figure 3-2).

 12

Figure 3-2 BIM Validation constraint set in checking view

The result icons in the right side indicate that the constraint set is checked. The colored
triangles with exclamation marks reveal how severe the problems found under the branch
are. The red ‘x’ means that some of the problems are marked rejected. The green check
mark means that no problems have been found or that all the underlying problems have
been accepted by the user.

3.4 Workflow

This section gives a high level picture of the normal workflow with Solibri Model
Checker. The advanced features of SMC are not described. The main points of the process
are shown in Figure 3-3. The process can be repeated several times during the building
information model life-cycle.

SMC can check building information models in the IFC format or models imported
directly from ArchiCAD. Currently almost every CAD vendor supports the IFC format.
Some CAD applications include IFC support as part of the product while others provide a
separate IFC module. Importing the model directly from ArchiCAD is done by a module
which is integrated to the ArchiCAD during the installation of SMC. When the building is
fully loaded into SMC it appears in the 3D view.

After a model is opened a suitable constraint set file is opened into the checking view. The
SMC installation contains constraint sets designed for various purposes. The escape route
constraint, whose development is described in this thesis, is included in the Security
Check constraint set. Usually constraints are preconfigured to meet the requirements of the
organization and the checking can started right away. Configuration can be done in the
constraint parameter view or in the CSM perspective. Checking is a fully automatic
process and it normally lasts from a couple of seconds to several minutes, depending on
the size of model and the number and complexity of constraints.

 13

CAD Model SMC Model

XML Report

RTF/PDF Report

Checking Process

Automatic checking

Configuration of constraints

Validation results

Visualization results
Quantity Data

Database

CAD Model SMC Model

XML Report

RTF/PDF Report

Checking Process

Automatic checking

Configuration of constraints

Validation results

Visualization results
Quantity Data

Database

Figure 3-3 Solibri Model Checker workflow

The results for each checked constraint are immediately available for closer examination
even if the whole checking process is not yet finished. The results are represented in the
constraint result view and the generated report tables are located in the constraint report
view. The checking results consist of categorized issues. Every issue has a textual
description of the problem and a list of building elements related to the problem. In the
result view the user can mark which issues are real problems and which are not. The user
can also attach textual comments and snapshots from the 3D view to the issues. To help
decision making, SMC visualizes the selected problems automatically in the 3D view. The
report tables contain usually quantity and key figure data. The escape route constraint does
not generate any report data.

When the user has gone through all the issues, it is time to generate the report document.
The supported report formats are RTF (Rich Text Format), PDF (Portable Document
Format), and XML (eXtensible Markup Language) (W3C 2003). The report contains all
issues with decisions, comments and snapshots added by the user. The RTF format is the
best format for later word processing. The XML report can be imported to the ArchiCAD
and Autodesk ADT using Solibri Issue Locator (SIL). The SIL helps the fixing of
problems by locating the problematic building elements in the CAD application.

 14

4 Escape Route Analysis

4.1 Introduction

Traditional building plan checking and approval process using the manual approach is
inefficient and time-consuming. It needs a huge amount of educated manpower and the
time spent delays the whole project. Automated checking of building codes offers
significant benefits. Possible design flaws can be found in minutes instead of hours. Well
designed automated code checking does not miss flaws as humans sometimes do.
Automated code checking has been studied for about ten years. Existing work includes
(Han et al. 1997), (Han et al. 2002), (Rong et al. 2004).

This chapter studies escape route analysis from two viewpoints: evacuation models and
fire codes. The aim of this study is to find the essential escape route regulations and
properties compliance checking for which is possible using the current building
information models. The main emphasis is on fire codes, because the analysis of this thesis
is based on them. Evacuation models are introduced shortly to bring out another
viewpoint. The last section introduces results of interviews of architects and public
authorities. The current processes and problems of escape route analysis are also discussed
in the section.

4.2 Definitions

Table 4-1 introduces central terms with definitions that are related to escape route analysis
and used in this thesis. The definitions are mainly collected from the building code
documents.

 15

Table 4-1 Escape route definitions used in the thesis

Term Definition

Escape Route The entire path of travel, measured from an escape door to
the furthest point in any room in a building.

Fire Compartment An enclosed space in a building that is separated from all
other parts of the building by enclosing construction that
provides a fire separation having a required fire-resistance
rating. (Ontario Fire Code 1997)

Fire Compartmentation The process of defining fire compartments.

Exit A part of a means of egress, including doorways, that leads
from the floor area it serves to a separate building, an open
public thoroughfare or an exterior open space protected from
fire exposure from the building and having access to an open
public thoroughfare. (Ontario Fire Code 1997)

Exit Passageway An enclosed passageway that leads from the compartment
exit to the final exit.

Firewall A fire separation of noncombustible construction that
subdivides a building or separates adjoining buildings to
resist the spread of fire that has a fire-resistance rating as
prescribed in the building code and that has structural
stability to remain intact under fire conditions for the
required fire-rated time. (Ontario Fire Code 1997)

Fire Use A member of a fire use classification. (AR-4 1998)

Fire Use Classification A classification listing off all the possible uses of a building
or space for the purposes of fire compartmentation.
(AR-4 1998)

Occupancy Load The number of persons for which a building or part thereof is
designed. (Ontario Fire Code 1997)

Storey A portion of a building that is situated between the top of any
floor and the top of the floor next above it, and where there is
no floor above it, that portion between the top of the floor
and the ceiling above it. (Ontario Fire Code 1997)

Travel Distance The distance from any point in a floor area to an exit
measured along the path of exit travel, except that when floor
areas are subdivided into rooms used singly or into suites of
rooms and served by public corridors or exterior
passageways, the distance shall be measured from the door
of the rooms or suites to the nearest exit. (Ontario Fire Code
1997)

 16

4.3 Evacuation Models

Models of human behavior in fire evacuation have been researched since the late 1970s.
Currently evacuation models are increasingly used in assessing the fire safety of buildings.
The potential applications are assisting building design, development of performance-
based building codes, emergency planning, and crowd planning and management. If the
models are used early enough in the design phase, models can help in identifying possible
design problems.

The two main categories of models are conceptual models and computer models. The
conceptual models are more abstract and theoretical than computer models. The
conceptual models try to explain the decision making process, stress, and behavioral
responses of occupants in an emergency. The computer models simulate human movement
and behavior during fire emergencies. The main objective of the computer models is to
predict evacuation times. Visualizations are very important for the computer models.
Figure 4-1 shows two different computer model visualizations from the same location of a
building.

Figure 4-1 Visualization of Simulex model and Myriad analysis (Crowd Dynamics 2005)

Currently the models are still hard to use and the results between different models vary a
lot. The review of 28 egress models shows that only 9 of them allow the user to import
buildings from a CAD application (Kuligowski 2004). Often the drawings imported from
the CAD need to be modified and extra information added before the model can be used.
In the comparison of two egress models the evacuation times differed by as much as 40%
(Kuligowski & Milke 2004). A report by the Society of Fire Protection Engineers notes
that the evacuation model tends to rely heavily on assumptions and it is not possible to
gauge with confidence their predictive accuracy (SFPE 2002).

4.4 Building Fire Codes

4.4.1 Overview

Building codes are used everywhere to control quality of building and engineering
provision. The codes differ from one place to another, but the building information needed
for code compliance is consistent. Codes are generally considered the minimum
acceptable level of safety for a new building. Usually building codes include the following

 17

parts: structural safety, fire safety, health requirements, and accessibility. The fire safety
codes are essential for this thesis.

Fire codes are that portion of the building code that relates to fire safety requirements, and
standards. The earliest public fire regulations in the US were adopted by New York City in
1860 (NFPA 1983). One of the first model regulations promoted by the National Fire
Protection Association (NFPA) was the 1927 Building Exits Code (Bukowski &
Kuligowski 2004). The first Finnish fire regulations were established by the law L
26/1920 (Finland's environmental administration 2003). The current Finnish fire code E1
was introduced in 1976 and has since been updated in 1981, 1997, and 2002.

4.4.2 Relevant Properties

In the thesis several fire codes used in countries in North America, Europe and Asia were
used as reference material. The purpose was to identify the most essential escape route
regulations and find similarities between different codes. The method used in the study of
codes was simply reading and comparing. The structure and similarity of government
regulations has been researched using more scientific methods in the Regnet & Regbase
project (Lau et al. 2003).

The basic principles in the codes were similar, but their presentation differed slightly.
Figure 4-2 and Figure 4-3 are examples of two regulation tables. These tables are
relatively complex compared to the usual presentation of regulations, although the
accompanying long lists of exceptions are not shown.

Figure 4-2 Determination of exit and access requirements (Building Code of the City of New York
2004)

 18

Figure 4-3 Minimum number of exit doors from a room, or exit routes from a storey, and required
minimum width thereof (Hong Kong Buildings Department 1996)

The basic idea of the fire codes is to ensure that it is possible to exit safely from the
building in case of fire or other emergency. The building must have a sufficient number of
suitably located exit passageways that have sufficient capacity, so that exit time is not
dangerously long. In the study of different fire codes five essential properties were found:

Number of occupants defines the number of persons that is used in definition of
minimums for capacity and number of escape routes. It can be specified using an actual
number for whom the spaces are designed or using appropriate occupant-area ratios. The
actual number is used for spaces that have, for example, fixed seating. The occupant-area
ratio can depend on the usage of the space. Sometimes occupant load is used instead of the
term number of occupants and fire use instead of the term usage.

Minimum number of escape routes defines how many separate routes must be leading
from a space to a safe place. Usually the minimum is two routes, but in residential
buildings only one route is often allowed. The minimum number of escape routes can
depend on the usage and number of occupants of the space (Figure 4-3).

Maximum travel distance defines the maximum allowed escape route length inside a fire
compartment measured from a space to a safe place. The route starts from the furthest
corner space or the center of a door and ends to the center of an exit door. The start point
can depend on the usage of the space. The exit door leads out from a fire compartment or
directly out from the building. The measurement method is often loosely defined e.g.
“Travel distance shall be measured along a natural and unobstructed path of travel”

 19

(Building Code of the City of New York 2004). The maximum travel distance can depend
on the number of different escape routes (Figure 4-2).

Minimum width of escape route defines the minimum capacity for spaces and door. The
widths can depend on the occupant load and the number of escape routes (Figure 4-3). The
occupant load is a cumulative sum of occupants that uses the door or space in case of
escape.

Minimum height of escape route defines the minimum clear height of spaces and doors.
Usually it is a simple value without any exceptions, as in the fire code of Finland: “Exit
passageways shall have a clear height of 2100mm” (Finland's environmental
administration 2002).

The codes also comprise a large number of other properties that are important, but very
difficult to check because of insufficient information on current building information
models. Checking of them needs information about objects that are not yet included in the
IFC exchange format. The five selected properties deal with basic building elements and
their compliance can analyzed with most building models. As the IFC evolves the analysis
module can be developed to check new properties.

4.5 User Studies

Three user studies have been done in the early stages of the work. The objective of the
interviews was to gain a greater understanding of current processes relating to escape
route planning in Finland. All the people interviewed were chosen from different sectors:
the Ministry of the Environment, an architect’s office, and the Helsinki building
inspectorate department. The Ministry of the Environment is responsible for development
of building codes. Architects plan and design buildings according to the codes. The
building inspectorate office approves and stores building plans.

Before the questioning, this project and the Solibri Model Checker product were
introduced to the interviewees. The questions were planned before each meeting. The
main emphasis was in stakeholders, responsibilities, current practices, and building fire
codes.

The Ministry of the Environment is responsible for the national building code of Finland.
The focus in the discussion was on the fire codes (Finland's environmental administration
2002). It seemed that the regulations for escape route length and capacity were the most
important parts of the code. The route length depends much on the method of
measurement. Environment guide number 39 (Finland's environmental administration
2003) is a useful handbook that helps users understand the fire codes. (Lilja 2004)

The visit to an architect’s office gave a good picture of current escape route planning
process. A chief architect is responsible for the plan. Normally, a project architect checks
the escape routes manually without any special software. In some complex cases a fire
safety consultant may be used. The time spent in checking of routes varies from minutes to
days depending on the size and complexity of building. Sometimes more time is spent
because of alterations to the design of the building and escape routes have to be checked
again. The escape routes are documented in the master drawings. The documentation

 20

contains as a minimum the borders of fire compartments, the widths of passageways and
doors, and the number of occupants. (Isoaho 2004)

The building inspectorate department approves the plans and grants a building license.
Usually the process takes between two weeks and a few months. The master drawings are
one of many documents that have to be delivered. Escape routes are marked on these
drawings. The drawings are still delivered and filed on paper. Sometimes CAD software is
used in order to help the approval process. There have been discussions about using
building information models in the process, but it seems that the filing of the digital
models is the most problematic issue. It is difficult to ensure that the models will be usable
during the whole life-cycle of a building, which can be over a hundred years. (Miller et al.
2004)

The architects were the most promising users for the escape route analysis module
implemented in this work. Many architects are skilled CAD users and they are more and
more moving towards building information modeling. The building inspectors were the
second most promising user group that could take advantage of the module, if building
information models become part of the deliverables. It is hard to see how the module
might be valuable for the Ministry of the Environment.

 21

5 Requirements Engineering

5.1 Introduction

This chapter introduces the requirements engineering (RE) practices used and the
requirements for the module. RE covers all of the activities involved in discovering,
documenting, and maintaining a set of requirements for a system. The term engineering
implies that systematic and repeatable techniques should be used to ensure that system
requirements are complete, consistent, relevant etc (Sommerville & Sawyer 1997). The
RE can be divided to three activities: requirements definition, requirements management,
and acceptance testing. The activities and their relations are shown in Figure 5-1. This
chapter focuses on the requirements definition and management. The acceptance testing,
which validates the system against the requirements, is described in section 7.3.

Requirements
Definition

Design &
Implementation &

Testing

Acceptance
Testing

Requirements Management

Requirements
Definition

Design &
Implementation &

Testing

Acceptance
Testing

Requirements Management

Figure 5-1 Requirements engineering process

In this thesis the requirements are divided into functional and non-functional requirements.
The functional requirements specify functions or services that the system must be capable
of performing from a user’s point of view. The non-functional requirements describe the
properties of the system, including usability, reliability and performance. All the
requirements are represented later in this chapter. The requirements provided the basis for
the design, implementation, and testing. They were also used in effort estimation and task
planning.

 22

5.2 Requirements Definition

The purpose of the requirements definition process is to refine business requirements into
a requirements document. The process consists of four phases: elicitation, analysis,
representation, and validation.

In the elicitation phase the requirements were discovered by interviewing architects and
public authorities, studying building fire codes, and brainstorming. The interviews and fire
code study are represented in Chapter 4. Some requirements were also reused from the
existing constraint modules.

In the analysis phase the collected requirements were refined into the initial set of
requirements. Each requirement was given estimates of business value and
implementation effort. These estimates were used in prioritization of requirements. The
priority for a requirement was calculated simply by multiplying the business value by
implementation effort.

The requirements were documented using a spreadsheet application, which helped in the
priority calculation. The uses cases were not used because the effort of writing was too
great for a one-man project. The requirement tables are represented in this chapter in short
form without information relating to prioritization.

5.3 Requirements Management

Requirements management is the process of managing changes to a system’s requirements
(Kotonya & Sommerville 1998). Normally requirements management needs a remarkable
effort. Because of the size of this project the effort spent on requirements management
was quite small.

In this project the requirements were managed by updating the requirements document.
The document was updated when new requirements were discovered or the estimates of
existing requirements were clarified. Improved understanding was the main reason for the
changes. The document acted also as a priority list for the design and implementation.

5.4 Functional Requirements

The user requirements are listed in Table 5-1. Each of these requirements describes one
function that the system must provide to users. The requirements do not describe user
interface or non-functional properties.

 23

Table 5-1 User Requirements

ID Short Description

R1 The user must be able to add exits (doors, windows, and openings).

R2 The user must be able to remove exits (doors, windows, and openings).

R3 The user must be able to visualize the current exits (doors, windows, and
openings).

R4 The user must be able to add fire compartments.

R5 The user must be able to remove fire compartments.

R6 The user must be able to visualize the fire compartments.

R7 The user must be able to specify the minimal acceptable length of escape routes.

R8 The user must be able to specify the minimal acceptable height of escape routes.

R9 The user must be able to specify the measurement method of the escape route
(direct linear measurement, indirect linear measurement, and wall aligned linear
measurement).

R10 The user must be able to specify the spaces where the escape route starts from the
door or from the furthest corner of the space.

R11 The user must be able to specify fixed occupancy numbers for the spaces.

R12 The user must be able to specify occupancy number per area unit for the spaces.

R13 The user must be able to specify a person number when the doors must open in
the direction of escape.

R14 The user must be able to specify the minimal acceptable number of different
escape routes the spaces must have with different occupancy numbers.

R15 The user must be able to specify the minimal acceptable escape route width with
different person numbers.

R16 The user must be able to visualize the escape routes for the selected space.

R17 The user must be able to visualize the calculations of the analysis.

R18 The user must be able to produce a report of the calculations.

R19 The user must be able to get a list of reasons why the model cannot be analyzed.

R20 The user must be able to get a list of spaces that do not have an escape route.

R21 The user must be able to get a list of spaces that do not have an acceptable escape
route.

R22 The user must be able to get a list of spaces that do not have an acceptable
number of different escape routes.

 24

The system requirements are listed in Table 5-2. These requirements are similar to the user
requirements, except that the system plays role of the user.

Table 5-2 System Requirements

ID Short Description

R23 The system must automatically detect fire compartments.

R24 The system must automatically detect exterior exits (door, windows, and
openings).

5.5 Non-functional Requirements

The non-functional requirements are listed in Table 5-3. Each of these requirements
describes one property that the system must provide. The main emphasis in the definition
of these requirements was verifiability.

Table 5-3 Non-Functional Requirements

ID Short Description

R25 The user interface must have English and Finnish localizations.

R26 The parameters must have different default values for the imperial and the metric
localizations.

R27 The system with recommended hardware must be able to analyze a building with
500 spaces in 5 minutes.

R28 The system must be able to analyze all building models available in Solibri
without program errors.

 25

6 Design and Implementation

6.1 Introduction

This chapter describes the design and the implementation of the escape route analysis
module. Design was done simultaneously with implementation. The objective was to
implement an escape route analysis module, but in addition four general modules were
implemented. In terms of SMC the escape route analysis module is a constraint which
checks escape routes. The functionalities of route analysis and compartment creation were
separated from the constraint module to their own modules, because there are other
constraints planned that need the same functionalities. Two additional modules were
implemented to ensure performance and low memory consumption.

The design of the modules relied heavily on use of UML diagrams. Use case and class
diagrams were modeled using the MagicDraw application (No Magic 2005). It supports
the addition of extra information relating to object oriented programming languages and
source code documentation. This feature – with the possibility of generating source code
from class diagrams – helped implementation a lot. The class diagrams are represented in
the appendix of this document.

The whole implementation was carried out using the Java programming language and
Eclipse integrated development environment (IDE) (Eclipse 2005). Testing and quality
assurance performed during the implementation are introduced in Chapter 7. A substantial
effort in addition to coding was spent in designing algorithms to solve geometric
problems. The varying quality of building information models was the biggest challenge
for the algorithms. The most notable are an algorithm for resizing areas, an algorithm for
merging interconnected spaces, and an algorithm for creating compartments. All these
algorithms are described in the later sections of this chapter.

 26

6.2 High Level Architecture

The current architecture of the Solibri Model Checker is divided into three clearly
separated layers. The lowest layer is Solibri Application Engine (SAE). The next layer is
Solibri Application Framework (SAF) and the topmost layer is the Application Layer.
(Solibri 2001)

The high level architecture of the escape route analysis module follows the architecture of
the Solibri Model Checker. It consists of one constraint module and a few plug-in
modules. The constraint module serves as the user interface and performs the actual
checking of the building information model. The plug-in modules offer services in
selected functional areas and any constraint module can use these services. The plug-in
modules are placed in the SAF layer and the constraint module is placed in the application
layer. Figure 6-1 shows the modules and their relations in a layer diagram.

SAF Layer

SAE Layer

Application Layer

Kernel

Model Search Tree Plug-in

Compartmentation Plug-in

Escape Route Constraint

Route Plug-in

Layout Plug-in

Figure 6-1 High Level Architecture

 27

6.3 Plug-in Modules

6.3.1 Overview

In the architecture of SMC plug-ins there are program modules that provide functionalities
and optionally UI for the application. The implemented plug-ins are located in the SAF
layer and they implement the singleton design pattern, which ensures that the class has
only one instance and it is globally accessible (Gamma et al. 1995). This ensures
reusability of the modules in the coming projects. The class diagrams of the plug-ins are
represented in the appendix of this document.

6.3.2 Model Search Tree Plug-in

The model search tree plug-in offers fast geometric building component searches.
Geometric searches are needed because the building components are often missing
relations to other components. It is often the case that a space object does not have
information about its bounding walls. The most common use case is to find all
components that are near a component, e.g. walls that are near a space. The model search
tree is used in route and compartmentation plug-ins.

There are two commonly used tree structures that can be used for three-dimensional
searches – octree and a binary space-partitioning (BSP) tree. The octree structure was
chosen for this plug-in. The BSP trees have more efficient partitioning of space and search
times are shorter (Hearn & Baker 1994). The octree was chosen instead of the BSP tree
because its implementation is easier and construction of the octree is faster, and search
times are short enough. In the current implementation the tree construction of a huge
model takes less than 500ms, which is acceptable.

The octree structure is based on a node with eight children. Each node corresponds to a
cubic region of three-dimensional space (Figure 6-2). Building components are linked to
the lowest node in the tree structure that entirely contains the three-dimensional shape of
the component. Large components are normally in the upper nodes and smaller
components in the lower nodes. A search of the building components starts from the root
node and continues recursively to the child nodes. The search continues only to these
nodes whose region intersects with the region under search.

 28

5 6

1 2

8

Figure 6-2 Three-dimensional space divided to octants and the corresponding octree node

The theoretical complexity of the octree search is O (log N) where N is the number of
nodes in the octree. Performance of the implementation was tested with three building
models. Building components of each model were uniformly distributed in a cubic
formation. The formation of the biggest model had 10648 (223) components in total. Test
results in Table 6-1 show that search time t grows almost linearly when the number of
components C grows exponentially. Average search time for the each model is average
time of million searches.

Table 6-1 Average octree search times

Number of Building Components, C Average Search Time, t [µs]

125 (53) 17.6

1000 (103) 24.9

10648 (223) 56.8

6.3.3 Layout Plug-in

The layout plug-in is a module that calculates footprints and area objects of the building
components and stores them for future use. A footprint is a closed polyline that represents
the 2D geometry of a building component. An area object is an area generated from the
footprint. Footprints and area objects are often needed in two-dimensional geometric
analyses of route and compartmentation plug-ins. This is one of reasons why the handling
of these objects is centralized to a separate plug-in. The other reason is to store created
objects into a single cache, which improves performance and reduces memory
consumption.

The layout plug-in has also services for handling area objects. The handling of area
objects is based on Boolean operations of constructive area geometry (CAG). The CAG
method creates a new area object by applying the binary union, difference, intersection, or
exclusive-or (XOR) operation to two area objects. The Boolean operations used in CAG
are demonstrated in Figure 6-3. The CAG is a part of the Java 2D API (Application
Program Interface) and it can be used in the plug-in implementation without any third
party library. The CAG operations are implemented in the Area class (J2SE 2005).

3 4 7

1 2 3 4 5 6 7 8

 29

Difference

Intersection Exclusive-Or

Union Difference

Intersection Exclusive-Or

Union

Figure 6-3 Boolean operations in CAG

The documentation of the Java 2D API does not give an indication of the complexity of a
single CAG operation, but it should be some where between O(E log E) and O(E2), where
E is the number of edges in operands. The average times of the empirical complexity test
shown in Table 6-2 confirms the hypothesis. The test performed 10000 CAG operations
for each operand pair. The number of edges E in polygonal operands was increased
exponentially from 4 to 1024. The average times increased only slightly faster than the
number of edges, which means that the complexity for Java 2D CAG operations is
probably O(E log E).

Table 6-2 Average times for CAG operations of the Java 2D API

Edges, E Union, t [µs] Difference, t [µs] Intersection, t [µs] Xor, t [µs]

4 15,6 11,0 22.2 21,1

8 29,9 29,9 31.1 21,7

16 64,1 34,6 38.8 32,5

32 91,9 57,5 94.3 61,0

64 203,2 120,7 195.5 98,8

128 356,7 244,8 356.5 231,1

256 777,6 517,5 693.3 504,7

512 1610,2 963,0 1688.5 975,0

1024 2910,5 1958,0 3127.9 2407,6

The most essential functionalities where the CAG is used are increasing and decreasing
the size of an area or a two-dimensional polygon. There are some trivial and efficient
algorithms with O(V) complexity, where V is the number of vertices in the polygon. These
algorithms use vector mathematics and produce good results when the polygon is convex
(a convex polygon contains all the line segments connecting any pair of its points), but

 30

low quality results when the polygon has sharp corners, thin regions, or holes. A sharp
corner should not expand to infinite as its angle approaches zero when the polygon is
increased in size. A thin region should divide the polygon into two polygons when the
polygon is decreased in size. Small holes should disappear when the polygon is increased
in size. Implementing resizing with CAG is not as efficient, but the results are very good
regardless of the geometry of polygon.

The algorithm implemented in this thesis is displayed in Figure 6-4. It can be divided to
four phases:

1. An area object is created from the polygon.
2. The line segments of the polygon are iterated and area objects are created for

each segment and sharp corner. The size of each area object depends on the
required increment of the resize.

3. The area objects created in the previous phase are added (union) or subtracted
(difference) from the original area object.

4. A new polygon is created from the resulting area object.

1. 2. 3. 4.1. 2. 3. 4.

Figure 6-4 Method for increasing and decreasing the size of a polygon using CAG

Phases 1 and 4 are simple conversions between area and polygon objects. The complexity
of one conversion is O(E). Phase 2 has one conversion per each edge and sharp corner.
The complexity of each conversion is O(1), because there are not more than 6 edges per
created polygon. The phase 3 has one CAG operation per each area object created in phase
2. If the complexity of CAG operation is O(E log E), then the complexity of the algorithm
is

).log()()log()()1()()(2 EEOEOEEOEOOEOEO =+++ 6.1

The footprints of the building components are often rectangular. The algorithm is
optimized to handle rectangular polygons with a simple algorithm. The algorithm just
moves the four corners inwards or outwards using vector mathematics. The complexity of
this kind of algorithm is O(1).

The layout plug-in also offers functionality for calculating the area value of an area object.
It is needed in the compartmentation plug-in when the sizes of area objects are compared.

 31

The Java 2D API does not include this functionality. The area values are calculated using
the method for polygon area presented in the Computational Geometry in C (O’Rourke
1998). Let a polygon P have vertices v0, v1,…,vn-1 and let p be any point in the plane. Then
the area is

).,,(),,(),,(),,()(01122110 vvpAvvpAvvpAvvpAPA nnn −−− ++++= L 6.2

If vi = (xi, yi), this expression is equivalent to the equation

∑∑
−

=
++

−

=
++ −+=−=

1

0
11

1

0
11).)(()()(2

n

i
iiii

n

i
iiii yyxxxyyxPA 6.3

The complexity of this algorithm is O(E), where E is the number of edges in the polygon.

6.3.4 Route Plug-in

The route plug-in analyses the building information model and creates a route graph. This
is the most complex and time consuming phase in the escape route analysis. It is done only
once per building model, because the plug-in stores the graph into the building model
when the user saves the model and loads it when the user opens the saved model. The
route graph is used in route queries, which are done by the constraint module. The plug-in
calculates the shortest route using the well known Dijkstra’s shortest path algorithm
(Dijkstra 1959). The route graph is created by analyzing the locations and geometries of
the building components. This can be divided into five phases:

1. Finding building elements that connect spaces
All doors, openings, and stairs that lead to spaces are found. This is done by searching
doors and stairs near the spaces using the model search tree plug-in. The locations of these
candidates are still inspected closer before choosing because (for instance) a door can be
near the space without being in direct contact with the space.

2. Finding interconnected spaces
Interconnected spaces are connected directly to each other without any walls between
them (Figure 6-5). First spaces and walls near the spaces are searched using the model
search tree plug-in. Then the segments of the space boundary that are not covered by walls
are compared to corresponding segments of the spaces close to them. If common segments
are found between the spaces, they are interconnected.

 32

Figure 6-5 Three interconnected spaces, Piparminttu model, Skanska Oy

3. Merging interconnected spaces
Interconnected spaces are merged before a route graph of the spaces can be created. This
phase is skipped if the space is not interconnected. Merging is done using CAG by
combining the space area objects with an area created from the common segments (Figure
6-6). The common segments are found in the previous phase. This algorithm produces
good results even when the spaces have narrow gabs between them or spaces are
intersecting.

1. 2. 3.1. 2. 3.

Figure 6-6 Method for merging interconnected spaces using CAG

 33

4. Creating a graph for spaces
For this operation a space area object, connected doors, and stairs are needed as the source
information. The idea is to create a graph of the area object that contains all routes
between any door and stairs. At first the space area is converted to polygons (an outer
boundary and possible holes), which are decomposed to a list of directed line-segments.
The line-segments are used for creation of route segments inside the space area. In total,
five different types of line segments are created. This is done using vector mathematics.
All segments are split so that the resulting segments do not cross any other segment. The
segments are split using a “brute force” algorithm, which tests each segment pair for
intersection. The complexity of the algorithm is O(S2), where S is the number of segments,
since there are

2/)1(1...)2()1(−=++−+− SSSS 6.4

different segment pairs. There is a faster and well-known “Bentley-Ottmann Algorithm”
(Bentley & Ottmann 1979), which computes intersections in O(S log S) time. It is not
needed because the bottleneck is currently in algorithms that use CAG. The split segments
that are located outside the area are discarded. The remaining segments form the graph.
The graph edges and nodes are seen in the graph testing window in Figure 6-7.

Figure 6-7 Route edges in ascending priority order in testing window: red, magenta, green, cyan, and
blue

In the testing window the edges are colored by cost. The edges with higher cost have a
penalty in route calculation. This way routes use edges that have smaller cost when
possible. The costs are designed so that the route goes along the centre line of the space
between the center points of the doors. This way the routes are acceptable for fire code

 34

compliance studied in paragraph 4.4. Normally the route goes from a door to the magenta
centre line using the red segments. The red edges lead to the doors and have the lowest
priority. The magenta edges are located in the centre of the walls and have the next lowest
priority. The green edges are parallel and cyan edges perpendicular to the walls. The green
edges have lower priority than cyan. The blue edges have the highest priority and are
located in the boundary of the area. The blue edges are seldom used by routes.

5. Building the final route graph
The route graph is created by combining the space graphs into a single master graph. To
assure small memory consumption and fast route queries, only the edges of the routes
between doors and stairs are added. These edges are searched by Dijkstra’s shortest path
algorithm (Dijkstra 1959). The other edges are discarded.

6.3.5 Compartmentation Plug-in

Buildings are often divided into compartments that serve different purposes.
Compartments are two-dimensional wall bounded areas. The compartmentation Plug-in is
used to create and modify compartments for different purposes. This is needed because
current building information models seldom have information about compartments. The
plug-in can handle three different types of compartments: fire compartments, gross area
compartments, and secure compartments. Escape route analysis uses gross area and fire
compartments. Gross area compartments are bounded by exterior walls and fire
compartments are bounded by exterior walls and fire walls.

The compartmentation plug-in has a user interface for creating and handling
compartments (Figure 6-8). The UI has tool buttons for creating and editing compartments
and a tree control for browsing the compartments and bounding walls. The creation of
compartment is a semiautomatic process. The user chooses the compartment type and the
method for selecting walls. The plug-in analyses the selected walls and creates the
compartments bounded by the walls. The compartments selected by the user are visualized
in 3D. The user can modify the compartments by adding or removing bounding walls.
After these operations the plug-in automatically updates the affected compartments.

 35

Figure 6-8 Compartmentation View

Compartment creation from the set of walls is challenging task. The geometries of walls
are inconsistent, there can be gaps between walls, and the walls sometimes intersect each
other. Constructive area geometry (CAG) can be used to solve these problems. The
algorithm is presented in Figure 6-9 is following:

1. The bottom area objects of the walls are increased in size using the method of the
layout plug-in described in Section 6.3.3.

2. The increased area objects are combined into one area object using the CAG union
operation.

3. a) Outer compartments (gross areas) are extracted from the outer boundary of the
combined area that is decreased in size.
b) The inner compartments (fire compartments) are extracted from the holes of the
combined area that are increased in size.

 36

1. 2.

3a. 3b.

1. 2.

3a. 3b.

Figure 6-9 Method for creating compartments from a set of walls using CAG

The bounding walls of the compartment are the walls whose enlarged bottom area
intersects with the compartment area. The intersection is tested with the intersection
operation of CAG. If the result of intersection is an empty area there is no intersection and
if the result area is smaller than the area of the increased bottom area there is a partial
intersection. The sizes of area objects can be compared by comparing their calculated area
values obtained from the layout plug-in.

6.4 Constraint Module

6.4.1 Overview

Constraints are small program modules that can check a building information model from
one or more aspects. Constraints are parametric and they can be configured to check the
model against different requirements. The user can configure the parameters in the
constraint parameter view (Figure 6-11). Problems found in checking are displayed in a
tree of the constraint results view (Figure 6-12) where they are organized by category. The
constraint may also have tools, which are like small applications that support the
constraints. Because of the nature of constraint tools the appearance and functionality
varies considerably between the different constraints. Typically constraint tools are used
for advanced visualization of the checking results. Tools are located in the constraint tools

 37

view (Figure 6-14). In addition to checking the model, constraints have the ability to
report information from the model. (Solibri 2004)

6.4.2 Checking

The escape route constraint module is responsible for checking the model against the
escape route requirements and representing the checking results. Since most of the
functionality needed for the checking is located in plug-ins, the constraint module can
focus on analyzing and representing the results.

Model checking has three phases: pre-check, check, and post-check. In the pre-check the
existence of fire compartments and exit doors are checked. Check method is called once
for every space component in the building. Figure 6-10 shows the flow of the check
method. The last phase contains only the checking of route widths. The widths cannot be
checked earlier because the information for all the routes is needed. The information is
collected during the check phase.

Create issue: Maximum travel distance is not specified for the space

Create issue: Travel distance from the space is too long

Create issue: Occupancy is not specified for the space

Create issue: The space has not enough routes

Create issue: The space has no routes to exits

Create issue: Too low route components

EscapeRouteConstraint::check

No routes

Occupancy not specified

Maximum travel distance not specified

Not enough routes

Too long travel distance

Too low route

One or more routes

Figure 6-10 Flow chart of the check method

 38

6.4.3 Constraint Parameter View

The constraint module must be configurable because fire codes differ from code to code.
All the fire codes examined have at least the following requirements:

• Minimum number of escape routes

• Formulas for determining the occupant counts of spaces

• Maximum travel distance (usually depends on the number of routes)

• Minimum width of escape route (usually depends on the number of occupants)

• Minimum height of escape route

The parameter view is displayed in Figure 6-11. It has one list parameter, three table
parameters, and one numeric parameter. The list parameter Exit List contains exits at the
termination of an escape route from a building. The list is building-specific and the user
must always fill the list with the exits of the current building. The first table parameter is
General Requirements. Each row in the table contains data for one usage type. The usage
type of the row is defined in the first cell and the data in the rest. The second table
parameter Space Requirements defines the usage types of the spaces. One row in the table
can define the usage type of a single space or a set of spaces. The matching spaces are
identified by type, name, and number. It is also possible to set a fixed occupant count for a
space or a set of spaces by filling the Occupant Count of the row. This is designed for
spaces where the maximum number of occupants is known. The third table parameter,
Minimum Exit Passageway Width, defines the minimum widths for escape routes. The
first cell in the row tells for what number of occupants the requirements are. The minimum
total widths and single widths are in the rest of the cells. The value of the last parameter
Minimum Exit Passageway Height is the minimum height of the escape routes.

 39

Figure 6-11 Constraint parameter view

6.4.4 Constraint Results View

Constraint results are represented to the user in a tree component in the constraint results
view. The tree consists of category, issue, and building element nodes. The purpose of a
category is to group a set of similar issues. An issue describes a problem which is related
to a set of building elements. The different types of nodes are seen in Figure 6-12.

Figure 6-12 Constraint results view

Table 6-3 contains all the categories and issues that the result tree of the escape route
constraint can have. The varying parts of the issue descriptions are marked with “<” and
“>” marks.

 40

Table 6-3 Categories and issues of the escape route constraint

Category name Issue description

Exits are not specified. Exits are specified in constraint
parameters.

Occupancy is not specified for the space <space
identifier>. Occupancies are specified in constraint
parameters.

Maximum travel distance is not specified for the space
<space identifier>. Travel distances are specified in
constraint parameters.

Missing information

The model does not have any fire compartments. They
can be added to the model from Window menu
(Window -> Views -> Compartmentation).

No routes to exits Space <space identifier> has no routes to exits. Check
that all exits are added to the constraint parameters.

Not enough routes to exits Space <space identifier> has <number> escape routes.
There should be at least <minimum number> routes.

Travel distance is too long Travel distance from space <space identifier> to safe
place is <length>. The maximum travel distance is
<maximum length>.

Exit passageway is too low Height of space <space identifier> is <height>. The
minimum exit passageway height is <required height>.

Width of door <door identifier> is <width>. The
minimum door width for <number> occupants is
<required width>.

Width of space <space identifier>. The minimum
passageway width for <number> occupants is <width>.

Total door width is <width>. The minimum total door
width for <number> occupants is <required width>.

Exit passageway is too narrow

Total passageway width is <width>. The minimum total
passageway width for <number> occupants is <required
width>.

 41

6.4.5 Constraint Tools View

The constraint results view shows the problems found in checking. Only routes that have
something wrong are shown. The constraint tools panel of the escape route constraint is
designed so that the user can see any route, fire compartment or occupant count visualized
in the 3D view (Figure 6-13).

Figure 6-13 Visualization of the escape route analysis results

The tools panel that controls the visualization consists of checkboxes and a tree (Figure
6-14). The checkboxes in the user interface are used to specify the visualizations that are
shown when a node in the tree is selected. The storeys are root nodes of the tree. The
storeys have spaces as child nodes and the spaces have routes as child nodes. The user can
see all the routes on one storey in the 3D view (Figure 6-13) by selecting a storey node in
the tree. The visualization of other kind of nodes works in a similar way.

Figure 6-14 Constraint tools view

 42

7 Testing and Quality Assurance

7.1 Introduction

This chapter concentrates on the testing and quality assurance of the module. The module
was tested using automatic unit and module testing. The module was evaluated against the
requirements using manual acceptance testing. The main emphasis was in automatic
testing. Automatic testing proved to be very valuable during the implementation of this
project and is now used in all projects. Several times it helped to find and locate critical
errors. It also turned to be very useful in refactoring and debugging. Currently automatic
testing is an important part of software process in Solibri. Automatic testing has also
increased the number of tests written by coders and changed the attitude to testing.

7.2 Automatic Testing

Unit and module tests are run automatically in a separate testing environment. The testing
environment consists of a PC with the testing framework installed. The PC must be
connected to the intranet because all the testing material is there. The testing framework
can be installed on the following operating systems: Microsoft Windows 2000/XP and
Apple Mac OS X. The central software of the framework is Apache Ant, which is a Java-
based build tool that can also run JUnit tests (Apache Ant 2005). The Ant reads and
executes XML-based (EXtensible Markup Language) configuration files.

The test is normally run once a day. The test script checks out the latest source codes and
test case codes from the version control system and compiles them. After the tests are run,
the results are collected and published on the Solibri intranet. Ant runs also a small Java
application which writes an automatic testing summary table. The summary table shown
in Figure 7-1 contains links to all test reports and numeric data such as the total number of
test cases, number of passed and failed test cases, and the total testing time in seconds. It
can be seen in Figure 7-1 that on 6th July source code that committed to the version
control was reason to a failure. The source code was fixed the next day.

 43

Figure 7-1 Ten topmost rows of the automatic testing summary table (August 2, 2005)

The unit tests are normal JUnit test cases that test classes of the modules. The module tests
are extended JUnit test cases. The test cases have helper methods, which make them easy
and fast to write. The helper methods are designed to decrease the bad smells that are
specific for test code (van Deursen et al 2001). The following simple module test assures
that the escape route module does not find any problems with a faultless building model.

public void testRoutes28() {
 String modelName = "179/routes28.ifc";
 String csetName = "179/EscapeRoutes.cset";
 init(modelName, csetName);

 Smodel model = (SModel)ModelChecker.getModelHandlingPlugin().getCurrentModel();
 EscapeRouteConstraint cons = (EscapeRouteConstraint) findConstraint(0);

 // Create fire compartments
 CompartmentationPlugin.getInstance().createCompartments(
 SFireCompartment.class, CompartmentationPlugin.ALL_WALLS_METHOD);

 // Set exits
 addExit(model, cons, "2ZkPW8$Cf50ubLED_ygE$Y");

 // Run constraint set
 runCset();

 // Check that there are no problem found in checking
 Collection cats = cons.getCategories();
 assertNotNull("Categories are null", cats);
 assertEquals("Wrong number of categories", 0, cats.size());
}

7.3 Acceptance Testing

Acceptance testing is conducted to determine whether a system satisfies its acceptance
criteria. It normally is normally done by actual users. In this thesis the software is
validated by the author against the requirements. The system is accepted if it satisfies all
requirements with the highest priority and half of the requirements with medium priority.
Two real life building models were used in the validation. The first building was an office
building designed with Autodesk ADT (Figure 7-2) and the second was a housing block
designed with Graphisoft ArchiCAD (Figure 7-3).

 44

Figure 7-2 Digitalo model in SMC, Senaatti-kiinteistöt

Figure 7-3 Piparminttu model in SMC, Skanska Oy

As the result of acceptance testing the system satisfies all but six medium or low priority
requirements. These six requirements are listed in Table 7-1. This means that the system
satisfies its acceptance criteria.

Table 7-1 Requirements that the system does not satisfy at the moment

ID Short Description

R9 The user must be able to specify the measurement method of the escape route
(direct linear measurement, indirect linear measurement, and wall aligned linear
measurement).

R13 The user must be able to specify a person number when the doors must open to the
direction of escape.

R14 The user must be able to specify the minimal acceptable number of different escape
routes the spaces must have with different occupancy numbers.

R18 The user must be able to produce a report of the calculations.

R23 The system must automatically detect fire compartments.

R24 The system must automatically detect exterior exits (door, windows, and openings).

 45

7.4 Quality Assurance

The quality of the source code was measured using CCCC tool (C and C++ Code
Counter). Despite the name, CCCC also analyzes Java code. It generates a report on
various metrics of the code. The supported metrics include lines of code, lines of code per
line of comment, McCabe's cyclomatic complexity, and metrics related to object oriented
design.

McCabe’s cyclomatic complexity is the most widely used software complexity metrics. It
measures the number of linearly-independent paths through a program module. In this
thesis all source code was refactored so that the maximum complexity number for each
Java class was 20 and 10 for each method in the classes. The complexity number was also
useful for designing unit testing so that the focus is on the methods with higher risk.

The other metrics measured the classic characteristics of object oriented design: visibility,
inheritance, reuse, and coupling. The visibility metric revealed the classes that had too
many methods and fields accessible to other objects. The inheritance metric showed the
depth of inheritance tree. The reuse metric counted the number of direct inherited objects.
The coupling metric was the most important of these metrics. It helped to spot classes that
had too high coupling.

 46

8 Conclusions and Future Work

8.1 Overview

This thesis has been carried out at Solibri Oy. The aim of this thesis was to define the set
of information that is needed to automatically perform escape route analysis, the methods
for performing the analysis, and the means of presenting the results of the analysis. The
thesis has of two parts: study and work.

The study of the thesis concentrates on building information modeling (BIM) and escape
route analysis. The study is mainly based on literature and interviews. BIM is becoming
approach that is widely adopted in the AEC industry. BIM offers many benefits and totally
new and powerful ways of working over the building life cycle. Implementing BIM is
challenging, since it requires a major paradigm shift from drawing-based to model-based
operations. One of the new use cases is automated building code checking. The thesis
studies regulations of fire codes that concern escape routes.

The work consists of the fundamental activities of software processes: definition, design,
implementation, and testing. The activities were carried out simultaneously. The definition
consisted of common activities of requirements engineering. The focus in the work was on
the design and implementation. Automatic testing had an important role in testing. Finally,
the system was acceptance tested against the requirements.

8.2 Results

As the result of this work an escape route analysis module was implemented and included
into the Solibri Model Checker product. The work shows that current building information
models have adequate information for automatic validation of escape routes against the
most essential regulations of building fire codes. High similarity between the regulations
in different geographic areas made it possible to create a common user interface that
allows the use of different fire codes as input for the analysis. The analysis results in a list
of problems that violate the regulations. The users can browse this list and visualize
problematic routes in the 3D view.

 47

The escape route analysis module has already been used in some ongoing building
projects. Typically the module has revealed some modeling errors such as missing doors
or spaces. These kinds of errors are equally problematic for almost any other use of the
building model.

One of the biggest challenges in the analysis was the varying quality of the building
information models. The problem was solved by analyzing the geometry and location of
building elements instead of relying on relations between them. This required a set of
efficient geometry algorithms that give reliable and high quality results. The three most
notable algorithms developed are an algorithm for increasing and decreasing polygons in
size, an algorithm for merging interconnected spaces, and an algorithm for creating
compartments. Constructive area geometry (CAG) was the key technology in these
algorithms in order to obtain high quality results.

The acceptance testing carried out at end of the project showed that the module meets the
requirements set. The module has still small problems in certain areas. These problems
can be solved when the module is developed further.

An automatic testing system developed to test the modules and algorithms proved to be
valuable. It is run every night and reports possible problems that changes to source code
have caused. The testing system is now important part of the software process in Solibri
Oy.

8.3 Future Work

The results of the thesis and feedback from the users have brought out some interesting
ideas for further development in escape route analysis. More ideas can be generated by
systematically collecting feedback from users or by organizing a field study.

Accessibility is one of the potential areas into which the module could be expanded.
Building codes often have separate regulations for accessibility. The accessibility codes
contain (for instance) regulations that concern usability of a wheel chair in a building.

In addition to these new ideas, there are some requirements defined that were not
implemented. The development of the module continues by implementing the most
valuable of the remaining requirements and by fixing possible problems.

 48

References

Apache Ant, Apache Ant www-pages, Apache Software Foundation, Referred 2005-8-10,
Available at http://ant.apache.org, 2005.

AR-4, Process Definitions Means of Escape – In Case of Fire (Draft 2), IFC R3.0 Domain
Project Documentation, 1998.

Autodesk, Autodesk www-pages, Autodesk, Inc., Referred 2005-8-15, Available at
http://www.autodesk.com, 2005.

Autodesk, Building Information Modeling in Practice, White paper, Autodesk, Inc., 2003.

Becker, D., Bye-bye, Blueprint: 3D Modeling Catches on, ZDNet News, 2004.

Bentley, J. L., and Ottmann, T. A. Algorithms for Reporting and Counting Geometric
Intersections, IEEE Transaction on Computers C 28, pp. 643-647, 1979.

Building Code of the City of New York, Department of Citywide Administrative Services,
2004.

Bukowski, R. W., and Kuligowski, E. D., The Basis for Egress Provisions in U.S.
Building Codes, NIST Building and Fire Research Laboratory, Interflam 2004 (Interflam
'04), International Interflam Conference, 10th Proceedings, Volume 1, July 5-7, 2004.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patters, Addison-Wesley,
1995.

Crowd Dynamics, Crowd Dynamics Limited www-pages, Crowd Dynamics Limited,
Referred 2005-7-12, Available at http://www.crowddynamics.com, 2005.

Dijkstra, E. W., A Note on Two Problems in Connexion With Graphs, Numerische
Mathematik 1, 269–271, 1959.

Eclipse, Foundation, Eclipse www-pages, Eclipse Foundation, Referred 2005-6-10,
Available at http://www.eclipse.org, 2005.

 49

Facilities Information Council, Working definition by Facilities Information Council,
November, 2004

Ferris, S., To BIM or not to BIM?, CADalyst Magazine, February, 2005.

Finland's environmental administration, Rakennusten paloturvallisuus & Paloturvallisuus
korjausrakentamisessa, Ympäristöministeriö, 2003.

Finland's environmental administration, Suomen rakentamismääräyskokoelma E1,
Ympäristöministeriö, 2002.

GeoPraxis, AEC Design Practice Study 2004 - Final Report, GeoPraxis, 2004.

Han, C., Kunz, C. J., and Law, K. H., Computer Models & Methods for a Disabled
Access Analysis Design Environment, CIFE Technical Report #123, July, 2000

Han, C., Kunz, C. J., and Law, K. H., Making Automated Building Code Checking a
Reality, Facility Management Journal, September/October, pp. 22-28., 1997.

Hearn, D., and Baker, M. P., Computer Graphics, C Version, 2nd edition, Prentice Hall,
1994.

Hong Kong Buildings Department, The Provision of Means of Escape in Case of Fire,
Hong Kong Buildings Department, 1996.

Howell, I., and Batcheler, B., Building Information Modeling Two Years Later – Huge
Potential, Some Success and Several Limitations, White paper, Newforma, January, 2005.

IAI International, IFC2x2 Final Online Documentation, International Alliance for
Interoperability, Available at http://www.iai-
international.org/Model/documentation/R2x2_Final/Online_Documents/index.htm, 2003

IAI International, International Alliance for Interoperability www-pages, International
Alliance for Interoperability, Referred 2004-10-7, Available at http://www.iai-
international.org/iai_international, 2004.

ISO 10303-11, Industrial automation systems and integration - Product data representation
and exchange - Part 11: The EXPRESS Language Reference Manual, ISO, Geneva,
Switzerland, 1994.

Isoaho, J., A-Konsultit Oy, Interview, Juni, 2004.

J2SE, Java 2 Platform SE 5.0 Documentation, Sun Microsystems, Available at
http://java.sun.com/j2se/1.5.0, 2005.

Java3D, Java3D 1.3.2 Documentation, Available at https://java3d.dev.java.net, 2005.

Khemlani, L., Should We BIM? Pushing the State of the Art in AEC, CADENCE
Magazine, June, 2003.

 50

Khemlani, L., The Euraka Tower: A Case Study of Advanced BIM implementation,
AECbytes, June, 2004.

Kotonya, G., and Sommerville, I., Requirements Engineering - Processes and Techniques,
John Wiley & Sons, New York, 1998.

Kuligowski, E. D., Review of 28 Egress Models, NIST SP 1032, January 2005, Workshop
on Building Occupant Movement During Fire Emergencies, Proceedings, Session 4.4.
June 10-11, 2004.

Kuligowski, E. D., and Milke, J. A., Performance-Based Design of a Hotel Building Using
Two Egress Models: A Comparison of the Results, Human Behavior in Fire: Public Fire
Safety - Professionals in Partnership, International Symposium, 3rd. Proceedings.
September 1-3, 2004, Belfast, N. Ireland, Interscience Communications Ltd., London,
England, 399-410 pp, 2004.

Lau, G. T. , Kerrigan, S., and Law., K. H., An Information Infrastructure for Government
Regulations, Proceedings of the 13th Workshop on Information Technology and Systems
(WITS'03), pp. 37-42, Seattle, WA, Dec 13-14, 2003.

Lilja, O., Finland Ministry of the Environment, Interview, September, 2004.

Miller, K., Rämä, M., and Karvinen, J., Helsinki Building Inspectorate Department,
Interview, November, 2004.

NFPA, 1984 Fire almanac, National Fire Protection Association, Quincy, 1983.

NIBS, Building Sciences, The National Institute of Building Sciences, Vol. 29, 2005.

No Magic, MagicDraw www-pages, No Magic Inc., Referred 2005-8-21, Available at
http://www.magicdraw.com, 2005.

Ontario Fire Code, Canadian Government Publishing, 1997.

O’Rourke, J., Computational Geometry in C, 2nd edition, Cambridge University Press,
1998.

ProIt, Arkkitehdin tuotemallisuunnittelu, Innovarch Oy, 2005.

ProIt, Tuotemallinnus rakennesuunnittelussa, perusteet ja ohjeita I, Finnmap Consulting
Oy, Rakennusteollisuus RT ry, 2004.

Requicha, A. A. G., Mathematical models of rigid solids, Tech. Memo. No. 28, Production
Automation Project, University of Rochester, 1977.

Rong, X., Wawan, S., and Zhiyong, H., Code Checking and Visualization of an
Architecture Design, 15th IEEE Visualization, 2004.

SFPE, Engineering Guide to Human Behavior in Fire, Society of Fire Protection
Engineers, Technical Report, 2002.

 51

Solibri, Overview of the Solibri Application Framework Architecture, Solibri Oy, 2001

Solibri, Solibri Online Help, Solibri Oy, 2004.

Sommerville, I., and Sawyer, P., Requirements Engineering: A Good Practice Guide, John
Wiley & Sons, New York, 1997.

van Deursen A., Moonen L., van den Bergh A. and Kok G., Refactoring Test Code. In
Proceedings of the 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2001), pp. 92-95. University of Cagliary, 2001.

W3C, Extensible Markup Language (XML) 1.0 3rd edition, World Wide Web
Consortium, February, 2004.

 52

Appendix

This appendix contains the UML class diagrams of the plug-in modules. The diagrams are
generated from the source codes using MagicDraw UML tool (No Magic 2005). All
methods and attributes related to user interface are hidden manually. Constructors and
private methods are not show in the diagrams. There are many external types used in
classes that are not defined in the diagrams. Most of them are defined in Java 3D 1.3.2
(Java3D 2005) or J2SE 5.0 (J2SE 2005) documentations. The rest types such as
DefaultPlugin and IComponent are part of Solibri Application Engine or Solibri
Application Framework.

LayoutPlugin
-areaMap : HashMap
-footprintMap : HashMap

+areaToPolygons(area : Area, polygons : ArrayList, holes : ArrayList)
+getArea(component : IComponent) : Area
+getAreaCopy(component : IComponent) : Area
+getFootprint(component : IComponent) : Point[]
+getFootprintCopy(component : IComponent) : Point[]
+polygonToArea(polygon : Tuple3d[]) : Area
+resizeArea(area : Area, resize : double)

LayoutPluginUtils

~createArea(entity : SEntity) : Area
~createFootprint(entity : SEntity) : Point[]

DefaultPlugIn

1

1

Diagram 1 Class diagram of the layout plug-in

 A

Octree
-maxSubdivisionLevel : int
-nEntities : int = 0
-root : OctreeNode

~add(entity : SEntity) : void
~build(entities : Collection) : void
~remove(entity : SEntity) : void
~search(lower : Point3d, upper : Point3d, filter : EntityFilter, result : Collection)

ModelSearchTreePlugin
-octree : Octree

+search(lower : Tuple3d, upper : Tuple3d, tolerance : double) : SEntity[]
+search(lower : Tuple3d, upper : Tuple3d, entityClass : Class, tolerance : double) : SEntity[]
+search(entity : SEntity, entityClass : Class, tolerance : double) : SEntity[]
...

OctreeNode
-data : ArrayList
-lower : Point3d
-negXnegYnegZ : OctreeNode
-negXnegYposZ : OctreeNode
-negXposYnegZ : OctreeNode
-negXposYposZ : OctreeNode
-posXnegYnegZ : OctreeNode
-posXnegYposZ : OctreeNode
-posXposYnegZ : OctreeNode
-posXposYposZ : OctreeNode
-upper : Point3d

~add(lower : Point3d, upper : Point3d, entity : SEntity) : void
~getData(lower : Point3d, upper : Point3d, result : Collection, filter : EntityFilter) : void
~remove(entity : SEntity, center : Point3d) : void

OctreeNodeData
~bounds : Bounds
~entity : SEntity

DefaultPlugIn

10..81

*

1

1

1
1

Diagram 2 Class diagram of the model search tree plug-in

 B

RouteGraph

+addAllEdges(edges : Collection) : boolean
+addEdge(edge : RouteEdge) : boolean
+findLongestPathBetween(startVertex : Object, endVertices : HashSet) : RouteEdge[]
+findShortestPathBetween(startVertex : Object, endVertex : Object) : RouteEdge[]
+findShortestPathsBetween(startVertex : Object, endVertices : HashSet) : HashMap
+getShortestRoute(start : RoutePoint, end : RoutePoint) : Route
+getShortestRoutes(start : RoutePoint, ends : RoutePoint[]) : Route[]

GraphComponent
-endPointsMap : HashMap
-graph : RouteGraph
-upToDate : Boolean

+clear() : void
+getEndPoints(c : IComponent) : RouteEndPoint[]
+getGraph() : RouteGraph
+GraphComponent()
+isUpToDate() : boolean
+setEndPoints(c : IComponent, points : RouteEndPoint[]) : void
+setGraph(graph : RouteGraph) : void
+setUpToDate() : void

RoutePlugin
-graph : GraphComponent = null
-routeUtils : RouteUtils = new RouteUtils(this)
-spaceUtils : SpaceUtils = new SpaceUtils(this)
-stairUtils : StairUtils = new StairUtils()

+calculateRouteGraph() : void
+clearRouteGraph() : void
-getAllExitEntities(model : Model) : Set
+getEndPoints(component : IComponent) : RouteEndPoint[]
~getRouteUtils() : RouteUtils
+getShortestRoute(start : RouteEndPoint, end : RouteEndPoint) : Route
~getStairUtils() : StairUtils

Route
-edges : RouteEdge []
-length : double

+createEdge(sourceVertex : Object, targetVertex : Object) : Edge
+getEdges() : RouteEdge[]
+getLength() : double
+setEndPoints(component : IComponent, endPoints : RouteEndPoint[]) : void

RoutePoint

+RoutePoint(point : Point)

RouteEdge
+DOOR_PRIORITY : int = 1
+CENTER_PRIORITY : int = 2
+COLLINEAR_PRIORITY : int = 3
+NORMAL_PRIORITY : int = 4
+EDGE_PRIORITY : int = 5
#length : double
#weight : double
-priority : int
-source : RoutePoint
-target : RoutePoint

+containsVertex(v : Object) : boolean
+getLength() : double
+getPriority() : int
+getSource() : Object
+getTarget() : Object
+getWeight() : double
+setWeight(weight : double) : void

RouteGraphEdge
-components : IComponent []
-routeEdges : RouteEdge []

+getComponents() : IComponent[]
+getRouteEdges() : RouteEdge[]RouteEndPoint

-component : IComponent

+getComponent() : IComponent

DefaultPlugin

2

1..*

* 1..*

1 *

1

1

1

0..1

Diagram 3 Class diagram of the route plug-in

 C

CompartmentationUtils

~addCompartmentWalls(walls : Set, compartmentClazz : Class, message : String) : SCompartment[]
~addWallsToCompartment(compartment : SCompartment, wallsToAdd : Collection) : void
~getSurroundingWalls(spaces : Collection) : Set
~removeWallsFromCompartment(compartment : SCompartment, wallsToRemove : Collection) : void
~updateCompartments(compartmentClazz : Class, existingCompartments : Collection, wallsToAdd : Set, wallsToRemove : Set) : Collection

CompartmentationPlugin
+@NONE_METHOD : int = 0
+@EMPTY_METHOD : int = 1
+@SELECTED_WALLS_METHOD : int = 2
+@SELECTED_SPACES_METHOD : int = 3
+@ALL_WALLS_METHOD : int = 4
+@ALL_SPACES_METHOD : int = 5
-utils : CompartmentationUtils

+addWallsToCompartment(compartment : SCompartment, walls : Collection) : void
+createCompartments(clazz : Class, method : int) : SCompartment[]
+getAllCompartments() : SCompartment[]
+getIntersectionCompartments(component : IComponent, compartmentClass : Class, intersectionRatio : double) : Collection
+removeWallsFromCompartment(compartment : SCompartment, walls : Collection) : void

DefaultPlugin

1

1

Diagram 4 Class diagram of the compartmentation plug-in

 D

	Acknowledgements
	Contents
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Methods
	1.4 Scope
	1.5 Outline of the Thesis

	2 Building Information Modeling
	2.1 Introduction
	2.2 Evolution of Design Practices
	2.3 Use Cases
	2.4 Benefits
	2.5 Challenges
	2.6 IFC

	3 Solibri Model Checker
	3.1 General
	3.2 User Interface
	3.3 Constraints
	3.4 Workflow

	4 Escape Route Analysis
	4.1 Introduction
	4.2 Definitions
	4.3 Evacuation Models
	4.4 Building Fire Codes
	4.4.1 Overview
	4.4.2 Relevant Properties

	4.5 User Studies

	5 Requirements Engineering
	5.1 Introduction
	5.2 Requirements Definition
	5.3 Requirements Management
	5.4 Functional Requirements
	5.5 Non-functional Requirements

	6 Design and Implementation
	6.1 Introduction
	6.2 High Level Architecture
	6.3 Plug-in Modules
	6.3.1 Overview
	6.3.2 Model Search Tree Plug-in
	6.3.3 Layout Plug-in
	6.3.4 Route Plug-in
	6.3.5 Compartmentation Plug-in

	6.4 Constraint Module
	6.4.1 Overview
	6.4.2 Checking
	6.4.3 Constraint Parameter View
	6.4.4 Constraint Results View
	6.4.5 Constraint Tools View

	7 Testing and Quality Assurance
	7.1 Introduction
	7.2 Automatic Testing
	7.3 Acceptance Testing
	7.4 Quality Assurance

	8 Conclusions and Future Work
	8.1 Overview
	8.2 Results
	8.3 Future Work

	References
	Appendix

