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Current development in building design is leading to a situation where buildings are 
designed with three-dimensional intelligent objects. Since these designs can also be 
shared using open standards, the possibility has emerged of using the designs to automate 
tasks that have traditionally been manual. One such task is escape route analysis, which is 
performed against building fire codes. This thesis defines the set of information that is 
needed to automatically perform such analysis, the methods for performing the analysis, 
and the means for presenting the results of the analysis. 
 
Within this thesis, an escape route analysis module is implemented and included in the 
Solibri Model Checker software product. The work consists of the fundamental activities 
of software process: study, definition, design, implementation, and testing. The definition 
is based on studies of building information modeling (BIM) and escape route analysis. 
The module was designed using the UML modeling language. The quality of the 
implementation was assured by continuous automatic testing and by tools that analyze the 
source code. Finally the module was evaluated against the defined requirements. 
 
The work shows that current building information models have adequate information to 
automatically check escape routes against the most essential regulations of the building 
fire codes. Currently there remains a lot of variation in the information content in the 
building information models. Much of the information is implicit. It appears only in the 
geometry of building components. In order to process geometric information the thesis 
introduces several geometry algorithms. The three most notable of these are: an algorithm 
for decreasing or increasing polygons in size, an algorithm for merging spaces, and an 
algorithm for creating compartments. 
 
Keywords: algorithm, automatic testing, building information modeling, escape route, 
fire code, geometry 
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Rakennusten suunnittelu on kehittymässä suuntaan, jossa rakennukset suunnitellaan 
kolmiulotteisilla älykkäillä objekteilla. Koska nämä suunnitelmat voidaan jakaa myös 
avointen standardien avulla, on suunnitelmien avulla mahdollista automatisoida tehtäviä, 
jotka on perinteisesti tehty käsin. Yksi sellainen tehtävä on rakennusmääräysten 
mukainen poistumistieanalyysi. Tämä opinnäytetyö määrittelee informaation, jota 
tarvitaan analyysin suorittamiseen, menetelmät analyysin tekemiseen ja tavat analyysin 
tulosten esittämiseen. 
 
Opinnäytetyössä on toteutettu poistumistieanalyysimoduuli Solibri Model Checker-
tuotteeseen. Työ koostuu tavanomaisista ohjelmistoprosessin toiminnoista: tutkiminen, 
määrittely, suunnittelu, toteutus ja testaus. Työssä tutkittiin tuotemallinnusta ja 
poistumistieanalyysia, minkä perusteella tehtiin määrittely. Moduuli suunniteltiin UML-
kuvauskielellä. Toteutuksen laatu varmistettiin jatkuvalla automaattitestauksella ja 
lähdekoodin analysointityökaluilla. Lopulta moduuli arvioitiin määriteltyjen vaatimusten 
avulla. 
 
Työ osoittaa, että nykyiset rakennusten tuotemallit sisältävät riittävän informaation 
automaattiseen tärkeimpien paloturvallisuusmääräysten mukaiseen poistumisteiden 
tarkastamiseen. Koska rakennusten tuotemallien informaation sisältö vaihtelee paljon, on 
suuri osa informaatiosta pääteltävä rakennusosien geometrian pohjalta. Geometrisen 
informaation käsittelyä varten työssä esitellään useita geometria-algoritmeja. Kolme 
merkittävintä niistä ovat algoritmi monikulmion pienentämiseen tai suurentamiseen, 
algoritmi tilojen yhdistämiseen ja algoritmi osastojen luomiseen. 
 
Avainsanat: algoritmi, automaattitestaus, geometria, palomääräykset, poistumistie, 
tuotemallinnus 
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1 Introduction 

1.1 Background 

Current development in building design is leading to a situation where buildings are 
designed with three-dimensional intelligent objects. Since these designs can also be shared 
using open standards, the possibility has emerged of using the designs to automate tasks 
that have traditionally been manual. One such task is to ensure that a building has a safe 
escape route from each room. In this thesis this task is called escape route analysis. The 
attributes that affect the analysis are given in building fire codes, which are set and 
enforced by local authorities. 
 
The aim of this thesis is to define the set of information that is needed to automatically 
perform the escape route analysis, the methods for performing the analysis, and the means 
for presenting the results of the analysis. From the user point of view the aim is to save 
time by providing an easy way to check building escape routes against the building fire 
codes. 
 
This thesis has been researched at Solibri Oy. The results of this work are included as part 
of the Solibri Model Checker software product. They include help material that is 
available in the Solibri Model Checker online help. 

1.2 Objectives 

The main objective of this work was to implement an escape route analysis module, which 
satisfies most of the current users' and customers' needs and is easily expandable to fulfill 
future needs. 

1.3 Methods 

Many software processes comprise the basic activities of the waterfall model: study, 
definition, design, implementation, and testing. In the software process of this project 
these activities were practiced in parallel. The methods used in the process are described 
below. 
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The study was started at the beginning of the project and continued throughout the work. It 
is based on literature and interviews. 
 
The definition began with collecting requirements through consulting with stakeholders, 
studying documents, and brainstorming. The requirements were documented and managed 
using a spreadsheet program. The priorities for the requirements were calculated simply 
by multiplying the business value by the estimated implementation effort. 
  
The design is based on these collated requirements. The architecture was designed and 
documented using the Unified Modeling Language (UML) and design patterns. The high 
level architecture was designed according to the Solibri Model Checker architecture. 
 
The module was implemented using the Java programming language and the latest 
development tools. A substantial part of the source code was programmatically generated 
from the UML diagrams. Performance critical algorithms were optimized using Java code 
profiler software. The quality of source code was assured using a source code analysis 
tool. 
 
Testing had an important role in the software process. Unit tests were written for non-
trivial code. All unit tests were automatically run and reported nightly. Automatic module 
testing was used to test the module against the requirements. The implemented module 
was evaluated against the requirements using two real life building information models 
obtained from customers. Non-functional requirements (e.g. performance and robustness) 
were tested using several large building information models. 

1.4 Scope 

This thesis can be divided roughly into five parts: study, requirement engineering, design, 
implementation, and testing. The main emphasis is on design and implementation. The 
study part describes building information modeling (BIM) and escape route analysis. The 
requirement engineering part presents the requirements and the methods used on a general 
level. The design and implementation part includes high-level descriptions of the essential 
algorithms. The testing part introduces different methods used in testing and quality 
assurance. This thesis excludes data related to requirement prioritization, details of the 
architecture of the Solibri Model Checker (SMC), source code for the module, and most of 
the testing results. 
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1.5 Outline of the Thesis 

This section describes the structure and contents of this thesis. The thesis comprises eight 
chapters and an appendix. 
 
Chapter 1 introduces briefly the project background, objectives, methods, scope, and 
outline. 
 
Chapter 2 studies building information modeling. 
 
Chapter 3 introduces the Solibri Model Checker product, the platform for the implemented 
module. 
 
Chapter 4 studies building escape route analysis from evacuation model and building code 
viewpoints. The emphasis is on the latter. The chapter also introduces definitions and user 
studies. 
 
Chapter 5 introduces the collected requirements and the methods used in requirements 
engineering. The requirements are listed in a short form in tables.  
 
Chapter 6 describes the design and the implementation of the escape route analysis 
module. The high-level architecture of the Solibri Model Checker is also introduced.  
 
Chapter 7 explains how testing and quality assurance were implemented. It also presents 
some results of the acceptance testing. 
 
Chapter 8 is the conclusion of this work. Future work is also discussed in this chapter. 
 
Appendix contains the UML class diagrams of the implemented modules. 
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2 Building Information Modeling 

2.1 Introduction 

The term Building Information Modeling (BIM) was first introduced in 2002 by Autodesk 
to describe the new technology of the Revit CAD solution. Later on other CAD vendors 
such as Graphisoft and Bentley started to use the same term to describe their solution as 
well. Below are two definitions for BIM: 
 

“Building information modeling (BIM) is a building design and documentation 
methodology characterized by the creation and use of coordinated, internally 
consistent computable information about a building project in design and 
construction.” (Autodesk 2005) 

 
“A computable representation of the physical and functional characteristics of a 
facility and its related project/life-cycle information using open industry standards 
to inform business decision-making for realizing better value. 
 
BIM can integrate all the relevant aspects into a coherent organization of data that 
computer applications can access, modify and/or add to, if authorized to do so.” 
(Facilities Information Council 2004) 

 
Building Information Modeling is an approach that offers access to building information 
through the three major phases of the building life cycle: design, construction, and 
management. While the adaptation of BIM is challenging, it offers clear advantages for 
each of these phases and creates a possibility for new services such as the automated 
escape route analysis implemented in this work. BIM is not a technology, but it can be 
achieved using a set of interoperable technologies. Different technologies utilize the 
reliable, high quality, and well-coordinated information stored in the integrated data 
model. The building model is revised throughout the whole building process resulting a 
thorough representation of a new building. 
 
The data model of a BIM solution consists of building components and their relationships 
with each other. The building components have information about their material, purpose 
(e.g. load bearing and fire protecting), and physical quantities (e.g. length and width). 
Physical components such as walls, slabs, beams and columns have also 3D 

 4



representations. In the best case the model has sufficient information for a range of 
purposes: 2D documentation, 3D visualization, structural analysis, cost estimation, 
facilities planning, asset management, and so on. Theoretically, a building information 
model provides a single, logical, and consistent source for all information associated with 
the building (Howell & Batcheler 2005). 

2.2 Evolution of Design Practices 

About 30 years ago nearly all drawings were done with ink or pencil on paper. Major 
changes meant recreating the drawing from scratch. CAD (Computer-Aided 
Design/Drafting) automated the task of drafting. Turing award winner Ivan Sutherland 
produced the innovative program Sketchpad in 1963. It is considered the first step of 
CAD. CAD applications improved productivity. Drawings were still nothing but dummy 
2D graphics: lines, circles, ellipses, hatches, and text. Building elements such as walls 
were represented as 2D lines. It was possible to separate lines of walls to their own 
drawing layer but nothing more. The information was in such a form that its meaning 
could only be interpreted by human.  
 
Charles Lang's team (including Donald Welbourn and A. R. Forrest) began research into 
3D CAD software in 1965. The commercial benefits of 3D CAD began to appear in 
1970s. The significant development in 3D modeling was the introduction of constructive 
solid geometry (CSG) (Requicha 1977). The CSG model consists of a set of Boolean 
operations applied to half-spaces. Another important step in 3D modeling was the 
introduction of non-uniform rational B-splines (NURBS) invented by Ken Versprille. The 
first NURBS modeler for PC (personal computer) NöRBS developed by CAS Berlin was 
available in 1993. The emergence of 3D CAD initially focused almost entirely on creating 
geometry to support visualization, and subsequent advances concentrated on creating 
realistic rendering and lighting effects (Howell & Batcheler 2005).  
 
There was also a need for non-graphic information. Object-oriented CAD (OOCAD) 
systems replaced graphic objects with building elements. The building elements have 3D 
geometry and a capability to store non-graphic information. Relations between building 
elements and abstract objects such as spaces made the system more intelligent. A change 
to an element could now automatically have an effect on other elements through 
relationships. This was impossible in previous CAD systems. This kind of parametric 
building modeling technology is separated from OOCAD in Autodesk white paper 
(Autodesk 2003), but in general terms it is OOCAD with very sophisticated relations 
between building objects. 
 
The earlier development steps were separated by technology (ink to CAD, 2D to 3D), 
whereas the newest step – BIM – is an overall concept that emphasizes information 
sharing between the different software that are used during the building life cycle, from 
initial design to demolition. The term was introduced by Autodesk in 2002. Figure 2-1 
shows the described design practices on a time line. The old practices are still in use and 
the popularity of the new paradigms is growing. 
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Figure 2-1 Evolution of Design Practices 
 
Currently BIM hotspots are the Nordic countries and Singapore, but BIM is also gaining 
popularity elsewhere, in Western Europe and the USA. The U.S. General Services 
administration (GSA) has stated that all AEC firms dealing with GSA will have to include 
a building information model as part of their work proposal. This year the American 
institute of architects (AIA) honored three projects with the first annual BIM award. 
 
One of the most recent surveys is conducted by GeoPraxis in 2004 (GeoPraxis 2004). The 
survey investigated the use of CAD systems in the construction industry. Most of the 687 
respondents were architects, designers or CAD drafters from the USA. It was encouraging 
that 50.9% of the respondents used a BIM application. The top three BIM applications 
were Graphisoft ArchiCAD (20.8%), Autodesk Architectural Desktop (13.0%), and 
Autodesk Revit (13.0%). However, 14.4% of respondents did not produce 3D models or 
building information models at all.  

2.3 Use Cases 

This section introduces shortly four common use cases of building information modeling. 
The escape route analysis module implemented in this thesis is useful in two use cases: 
building design and automated building code checking.  For each of the four use cases an 
example is given. 
 
Building design is the first use of BIM. Intelligent components can automate simple tasks 
and design work flows easily between different design disciplines, since the information is 
stored in a non-proprietary format. A good example is the Eureka Tower (located in 
Melbourne), which is one of the largest projects designed using the principles, 
methodology, and processes of BIM (Khemlani 2004). In the project, automated 
documentation allowed everyone to concentrate on the design, which enhances 
cooperation between employees. 
 
Facilities management (FM) is the management of buildings and services. It deals 
mostly with building spaces (rooms) and their related equipment. The expenses of 
managing a building during its lifetime are greater than its design and construction costs. 
A BIM-based FM solution helps in maintaining information about the building. For 
example, Frankfurt airport is managed by a Bentley Facilities solution. The BIM solution 
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allows access to the information on spaces, piping, and cabling. The system helps to keep 
expensive downtime to minimum. 
 
Quantity take-off is one of the most frequently implemented BIM use cases. It is the 
process of automatically creating the list of quantities in a building design. By combining 
quantity information with building component unit costs, it is possible to create a fast and 
reliable cost estimate for the building. In traditional quantity take-off, a substantial part of 
the process is manual and laborious. The current trend is to automate the process as much 
as possible. Graphisoft’s Virtual Constructor is a good example of a product where 
quantity take-off and cost estimation are essential part of modeling software. 
 
Automated building code checking is a promising use case. Construction has long been 
controlled by legislation. Ensuring that a building design follows all building codes is a 
major undertaking for an architect. Once a BIM model contains all the information 
required for code checking, it is possible to computerize the checking, which can save a 
lot of work. Time savings can be particularly substantial if a code violation is found before 
the design is sent to the building authorities. Building authorities, too, can benefit from 
automation. Automated building code checking is becoming a reality. The Singapore 
government has recently unveiled an automated national building code compliance system 
(NIBS 2005). The Singapore system allows building designers to check their plans against 
the building codes and submit them to the building authorities for approval. 

2.4 Benefits 

There is a consensus on the importance of BIM and its potential benefits. There is not yet 
much scientific research on BIM, but a number of successful BIM projects in the building 
industry show that BIM has obvious advantages when compared to traditional methods. 
Most of the recent writings of the AEC field experts and whitepapers of CAD vendors 
give a positive picture of BIM. The following list of the benefits is collected and refined 
from BIM project success stories, the writings of experts, and CAD vendor whitepapers: 
higher productivity, higher quality, better coordination, central information, consistency, 
accessibility, versatility, and new services. 

2.5 Challenges 

Adoption of BIM is very challenging because building industry firms are relatively small 
and contracts are often made for single projects. The agreements between different parties 
state clearly the responsibilities of each party. Where BIM propagates for sharing of 
information, the agreements inhibit sharing of responsibility. Quite often price is the most 
important selection criteria when choosing subcontractors. This often leads to sub-
optimally performing project teams. 
  
A panel of CAD vendors and end users at the Technology for Construction Executive 
Forum held in 2004 brought out the following obstacles to BIM implementation: 
globalization, corporate culture, data storage costs, lack of standards, and interoperability 
(Ferris 2005). David Becker holds that the fragmentation of the building industry and 
current building processes are also challenges for BIM (Becker 2004).  
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Globalization is challenge, because many firms have offshore business, often in regions 
that do not have the technology to support BIM. 
 
Corporate culture is one of the biggest challenges. Project participants such as estimators 
and draftsmen are used to doing their jobs in a particular way. They may not want to 
change their way of working or trust the data derived from a building information model. 
The employees may also fear losing their positions as experts when their skills become 
obsolete. 
 
Data storage costs increases as the amount of information grows. The increased 
collaboration and regulatory requirements to save data also serve to grow the costs. The 
most used IFC exchange format is uneconomic. The size of a small building model 
without details is normally several megabytes. Currently the IFC standard is extending, 
which means that models become even bigger. 
 
Lack of standards is one of the reasons for the variable quality of building models. There 
are no agreements as to what information must be included in the models. Different parties 
are creating guidelines to solve the problem, but they are not yet widely adopted. In 
Finland the ProIt project recently published guidelines for creating better building models 
(ProIt 2004, ProIt 2005). 
 
Interoperability is a key issue because each building project requires the use of many 
software applications. One solution is a standardized format for building models. 
Currently the IFC exchange format studied in the next section (2.6) is the most promising. 
More applications should support IFC to make interoperability a reality. 
 
Fragmentation of building industry has led to technological inconsistency across 
different segments. Leading-edge architects may produce 3D models, but they have to 
deliver 2D paper drawings to city planning departments. A lot of information is lost in 
conversions. 
 
Current building processes are full of old rules that define the responsibilities of 
employees and organizations. Current organizational structures have a lot of inefficiency. 
BIM is requiring architects and designers to perform tasks that were typically left to other 
stakeholders, but changing the rules is hard. Quantity surveyors are afraid of losing their 
work when quantities are automatically listed by software. 
 
In this project the biggest challenge was the varying quality of building information 
models. It may be a consequence of poor modeling standards or knowledge. In most of the 
tested real life building models there was decent modeling of the geometry of building 
elements but the relations between elements were occasionally missing. Some of the 
building models had also building elements that were of the wrong type e.g. doors were 
modeled as windows. Because of these kinds of modeling errors the escape route analysis 
module has to use geometry as a primary information source. This raises the complexity of 
the analysis significantly. 
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2.6 IFC 

Each major CAD solution has its own BIM formats and a set of compatible building-
related applications. Smaller CAD vendors lack resources and they tend to integrate third 
party applications. So there is a need for standard BIM format that could support 
interoperability across individual, discipline-specific applications. (Khemlani 2003) 
 
Industry Foundation Classes (IFC) is an open international standard managed by the 
International Alliance of Interoperability (IAI). IAI is an alliance of organizations within 
the construction and facilities management industries dedicated to improving processes 
within the industry through defining the use and sharing of information. Organizations 
within the alliance include architects, engineers, contractors, building owners, facility 
managers, manufacturers, software vendors, information providers, government agencies, 
research laboratories, universities and more. (IAI International 2004) 
 
The IFC model is expressed in EXPRESS language, which is the data modeling language 
of STEP (Standard for the Exchange of Product model data, ISO 10303) and standardized 
as ISO 10303-11. EXPRESS consists of language elements which allow unambiguous 
data definition and specification of constraints on the data defined and by which aspects of 
product data can be specified. It deals with data types and constraints on instances of the 
data types. (ISO 10303-11 1994) 
 
The IFC high level architecture diagram is illustrated in Figure 2-2. The IFC model is 
divided into four layers: domain, interoperability, core, and resource layer. Each layer 
contains categories which define sets of entities. There are 623 entity definitions in the 
IFC2x2 model. Entities on layers can only be related to or reference an entity at the same 
or lower layer, but not one at a higher layer. It means that a boiler in the HVAC category 
on domain layer can be related to a wall in building element category on interoperability 
layer, but the wall cannot be related to the boiler. 
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Figure 2-2 The overall architecture of the IFC model (IAI International 2003)  
 
The analysis of this thesis uses entities on the interoperability layer and on lower layers. 
Essential entities for the escape route analysis of this thesis are space, wall, door, opening, 
and stair. Spaces are the most central entities for the analysis. The location and geometric 
representation of a space define the location for the routes. The space identifiers: type, 
name, and number are used in defining occupancies and reporting results. The location 
and geometry of walls are mainly used in compartmentation and combining partial spaces. 
The doors and openings are used in connecting routes between spaces through walls. The 
stairs are used in vertical connection of spaces. Use of relations between entities is 
avoided in the analysis because they are often lacking or faulty. Entities from the 
plumbing fire protection domain are not used, because currently there is only one fire 
protection entity specified. There are some projects in IAI that are related to escape routes. 
A project named Escape Route Planning (AR-4 1998) was started in 1998 and is currently 
on hold and looking at resources to start again. Another project named Code Compliance 
Support (CS-4) was completed in 2003, and fire and personal safety was one of the areas 
that had a particular focus. The capabilities of some existing entities have been extended 
and support for alarms, controls, drainage etc. has been added to the domain layer. 
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3 Solibri Model Checker 

3.1 General 

Solibri Model Checker (SMC) is a commercial design spell-checking software product for 
the Architecture Engineering Construction (AEC) and Facilities Management (FM) 
industry. SMC can check building information models in the IFC format or models 
imported directly from ArchiCAD. SMC is a stand-alone application and is compatible 
with Microsoft Windows and Apple Mac OS X. SMC is localized into English and 
Finnish languages and metric and imperial units.  
 
Solibri Model Checker adds value throughout the life cycle of the building. It is a valuable 
tool for architects, construction companies, and building owners. The users can check 
design cost-effectively, deliver high quality building information models and obtain 
reliable cost estimates and key factors. 
 
In this thesis Solibri Model Checker provides the software environment in which the 
escape route module operates. SMC provides an internal object-oriented representation of 
the building information model that is used as source information for the escape analysis. 

3.2 User Interface 

The user interface (UI) of SMC is shown in Figure 3-1. The functionality of the SMC is 
arranged in different views. The UI of each view consists of a toolbar and a panel. The 
user can resize, change location, close, and open them. The user interface includes two 
main perspectives: SMC, which is the default perspective, and CSM (Constraint Set 
Manager). Perspectives are visual containers for a set of views. The UI of CSM is not 
introduced in this thesis because it is not relevant to this work. The perspectives and view 
are controlled from the Window menu. 
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Figure 3-1 The user interface of Solibri Model Checker 3.0 
 
The building information model is visualized in the 3D view, where the model can be 
easily navigated and visualized in many different ways. Checking of the model is based on 
rules defined by constraints which are shown in the checking view in top left corner. The 
constraints are introduced in more detail in the next section 3.3. The lower right corner has 
four views: parameters, results, tools, and report. Each of these views contains specific 
information about the constraint selected in the checking view. Information on the 
currently selected building element, constraint, constraint result, and other objects is 
shown in the info view in the bottom left corner. The default UI layout includes the model 
tree view for browsing the model and the selection view for handling selections. The filter 
view and compartmentation view are not visible by default. The compartmentation module 
is a part of this work and is discussed in section 6.3.5. 

3.3 Constraints 

SMC checks and analyses the product model using constraints. Constraints are compact 
software modules that contain checking parameters and logic. Constraints are configured 
based on the user requirements. For example, the maximum allowed escape route length is 
adjusted based on local requirements. Several constraints are combined into constraint 
sets. Constraints sets can also nest other constraint sets. Constraint sets are stored in files 
that can be created and modified in the CSM perspective. In the SMC perspective the 
constraint sets are located in the checking view (Figure 3-2). 
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Figure 3-2 BIM Validation constraint set in checking view 
 
The result icons in the right side indicate that the constraint set is checked. The colored 
triangles with exclamation marks reveal how severe the problems found under the branch 
are. The red ‘x’ means that some of the problems are marked rejected. The green check 
mark means that no problems have been found or that all the underlying problems have 
been accepted by the user. 

3.4 Workflow 

This section gives a high level picture of the normal workflow with Solibri Model 
Checker. The advanced features of SMC are not described. The main points of the process 
are shown in Figure 3-3. The process can be repeated several times during the building 
information model life-cycle. 
 
SMC can check building information models in the IFC format or models imported 
directly from ArchiCAD. Currently almost every CAD vendor supports the IFC format. 
Some CAD applications include IFC support as part of the product while others provide a 
separate IFC module. Importing the model directly from ArchiCAD is done by a module 
which is integrated to the ArchiCAD during the installation of SMC. When the building is 
fully loaded into SMC it appears in the 3D view. 
 
After a model is opened a suitable constraint set file is opened into the checking view. The 
SMC installation contains constraint sets designed for various purposes. The escape route 
constraint, whose development is described in this thesis, is included in the Security 
Check constraint set. Usually constraints are preconfigured to meet the requirements of the 
organization and the checking can started right away. Configuration can be done in the 
constraint parameter view or in the CSM perspective. Checking is a fully automatic 
process and it normally lasts from a couple of seconds to several minutes, depending on 
the size of model and the number and complexity of constraints. 
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Figure 3-3 Solibri Model Checker workflow 
 
The results for each checked constraint are immediately available for closer examination 
even if the whole checking process is not yet finished. The results are represented in the 
constraint result view and the generated report tables are located in the constraint report 
view. The checking results consist of categorized issues. Every issue has a textual 
description of the problem and a list of building elements related to the problem. In the 
result view the user can mark which issues are real problems and which are not. The user 
can also attach textual comments and snapshots from the 3D view to the issues. To help 
decision making, SMC visualizes the selected problems automatically in the 3D view. The 
report tables contain usually quantity and key figure data. The escape route constraint does 
not generate any report data. 
 
When the user has gone through all the issues, it is time to generate the report document. 
The supported report formats are RTF (Rich Text Format), PDF (Portable Document 
Format), and XML (eXtensible Markup Language) (W3C 2003). The report contains all 
issues with decisions, comments and snapshots added by the user. The RTF format is the 
best format for later word processing. The XML report can be imported to the ArchiCAD 
and Autodesk ADT using Solibri Issue Locator (SIL). The SIL helps the fixing of 
problems by locating the problematic building elements in the CAD application. 
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4 Escape Route Analysis 

4.1 Introduction 

Traditional building plan checking and approval process using the manual approach is 
inefficient and time-consuming. It needs a huge amount of educated manpower and the 
time spent delays the whole project. Automated checking of building codes offers 
significant benefits. Possible design flaws can be found in minutes instead of hours. Well 
designed automated code checking does not miss flaws as humans sometimes do. 
Automated code checking has been studied for about ten years.  Existing work includes 
(Han et al. 1997), (Han et al. 2002), (Rong et al. 2004). 
 
This chapter studies escape route analysis from two viewpoints: evacuation models and 
fire codes. The aim of this study is to find the essential escape route regulations and 
properties compliance checking for which is possible using the current building 
information models. The main emphasis is on fire codes, because the analysis of this thesis 
is based on them. Evacuation models are introduced shortly to bring out another 
viewpoint. The last section introduces results of interviews of architects and public 
authorities. The current processes and problems of escape route analysis are also discussed 
in the section. 

4.2 Definitions 

Table 4-1 introduces central terms with definitions that are related to escape route analysis 
and used in this thesis. The definitions are mainly collected from the building code 
documents. 
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Table 4-1 Escape route definitions used in the thesis   

Term Definition 

Escape Route The entire path of travel, measured from an escape door to 
the furthest point in any room in a building. 

Fire Compartment An enclosed space in a building that is separated from all 
other parts of the building by enclosing construction that 
provides a fire separation having a required fire-resistance 
rating. (Ontario Fire Code 1997) 

Fire Compartmentation The process of defining fire compartments. 

Exit A part of a means of egress, including doorways, that leads 
from the floor area it serves to a separate building, an open 
public thoroughfare or an exterior open space protected from 
fire exposure from the building and having access to an open 
public thoroughfare. (Ontario Fire Code 1997) 

Exit Passageway An enclosed passageway that leads from the compartment 
exit to the final exit. 

Firewall A fire separation of noncombustible construction that 
subdivides a building or separates adjoining buildings to 
resist the spread of fire that has a fire-resistance rating as 
prescribed in the building code and that has structural 
stability to remain intact under fire conditions for the 
required fire-rated time. (Ontario Fire Code 1997) 

Fire Use A member of a fire use classification. (AR-4 1998) 

Fire Use Classification A classification listing off all the possible uses of a building 
or space for the purposes of fire compartmentation.  
(AR-4 1998) 

Occupancy Load The number of persons for which a building or part thereof is 
designed. (Ontario Fire Code 1997) 

Storey A portion of a building that is situated between the top of any 
floor and the top of the floor next above it, and where there is 
no floor above it, that portion between the top of the floor 
and the ceiling above it. (Ontario Fire Code 1997) 

Travel Distance The distance from any point in a floor area to an exit 
measured along the path of exit travel, except that when floor 
areas are subdivided into rooms used singly or into suites of 
rooms and served by public corridors or exterior 
passageways, the distance shall be measured from the door 
of the rooms or suites to the nearest exit. (Ontario Fire Code 
1997) 
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4.3 Evacuation Models 

Models of human behavior in fire evacuation have been researched since the late 1970s. 
Currently evacuation models are increasingly used in assessing the fire safety of buildings. 
The potential applications are assisting building design, development of performance-
based building codes, emergency planning, and crowd planning and management. If the 
models are used early enough in the design phase, models can help in identifying possible 
design problems. 
 
The two main categories of models are conceptual models and computer models. The 
conceptual models are more abstract and theoretical than computer models. The 
conceptual models try to explain the decision making process, stress, and behavioral 
responses of occupants in an emergency. The computer models simulate human movement 
and behavior during fire emergencies. The main objective of the computer models is to 
predict evacuation times. Visualizations are very important for the computer models. 
Figure 4-1 shows two different computer model visualizations from the same location of a 
building. 
 

 
Figure 4-1 Visualization of Simulex model and Myriad analysis (Crowd Dynamics 2005) 
 
Currently the models are still hard to use and the results between different models vary a 
lot. The review of 28 egress models shows that only 9 of them allow the user to import 
buildings from a CAD application (Kuligowski 2004). Often the drawings imported from 
the CAD need to be modified and extra information added before the model can be used. 
In the comparison of two egress models the evacuation times differed by as much as 40% 
(Kuligowski & Milke 2004). A report by the Society of Fire Protection Engineers notes 
that the evacuation model tends to rely heavily on assumptions and it is not possible to 
gauge with confidence their predictive accuracy (SFPE 2002). 

4.4 Building Fire Codes 

4.4.1 Overview 

Building codes are used everywhere to control quality of building and engineering 
provision. The codes differ from one place to another, but the building information needed 
for code compliance is consistent. Codes are generally considered the minimum 
acceptable level of safety for a new building. Usually building codes include the following 

 17



parts: structural safety, fire safety, health requirements, and accessibility. The fire safety 
codes are essential for this thesis. 
 
Fire codes are that portion of the building code that relates to fire safety requirements, and 
standards. The earliest public fire regulations in the US were adopted by New York City in 
1860 (NFPA 1983). One of the first model regulations promoted by the National Fire 
Protection Association (NFPA) was the 1927 Building Exits Code (Bukowski & 
Kuligowski 2004). The first Finnish fire regulations were established by the law L 
26/1920 (Finland's environmental administration 2003). The current Finnish fire code E1 
was introduced in 1976 and has since been updated in 1981, 1997, and 2002. 

4.4.2 Relevant Properties 

In the thesis several fire codes used in countries in North America, Europe and Asia were 
used as reference material. The purpose was to identify the most essential escape route 
regulations and find similarities between different codes. The method used in the study of 
codes was simply reading and comparing. The structure and similarity of government 
regulations has been researched using more scientific methods in the Regnet & Regbase 
project (Lau et al. 2003). 
 
The basic principles in the codes were similar, but their presentation differed slightly.  
Figure 4-2 and Figure 4-3 are examples of two regulation tables. These tables are 
relatively complex compared to the usual presentation of regulations, although the 
accompanying long lists of exceptions are not shown. 
 

 
Figure 4-2 Determination of exit and access requirements (Building Code of the City of New York 
2004) 
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Figure 4-3 Minimum number of exit doors from a room, or exit routes from a storey, and required 
minimum width thereof (Hong Kong Buildings Department 1996) 
 
The basic idea of the fire codes is to ensure that it is possible to exit safely from the 
building in case of fire or other emergency. The building must have a sufficient number of 
suitably located exit passageways that have sufficient capacity, so that exit time is not 
dangerously long. In the study of different fire codes five essential properties were found:  
 
Number of occupants defines the number of persons that is used in definition of 
minimums for capacity and number of escape routes. It can be specified using an actual 
number for whom the spaces are designed or using appropriate occupant-area ratios. The 
actual number is used for spaces that have, for example, fixed seating. The occupant-area 
ratio can depend on the usage of the space. Sometimes occupant load is used instead of the 
term number of occupants and fire use instead of the term usage. 
 
Minimum number of escape routes defines how many separate routes must be leading 
from a space to a safe place. Usually the minimum is two routes, but in residential 
buildings only one route is often allowed. The minimum number of escape routes can 
depend on the usage and number of occupants of the space (Figure 4-3). 
 
Maximum travel distance defines the maximum allowed escape route length inside a fire 
compartment measured from a space to a safe place. The route starts from the furthest 
corner space or the center of a door and ends to the center of an exit door. The start point 
can depend on the usage of the space. The exit door leads out from a fire compartment or 
directly out from the building.  The measurement method is often loosely defined e.g. 
“Travel distance shall be measured along a natural and unobstructed path of travel” 
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(Building Code of the City of New York 2004). The maximum travel distance can depend 
on the number of different escape routes (Figure 4-2). 
 
Minimum width of escape route defines the minimum capacity for spaces and door. The 
widths can depend on the occupant load and the number of escape routes (Figure 4-3). The 
occupant load is a cumulative sum of occupants that uses the door or space in case of 
escape. 
 
Minimum height of escape route defines the minimum clear height of spaces and doors. 
Usually it is a simple value without any exceptions, as in the fire code of Finland: “Exit 
passageways shall have a clear height of 2100mm” (Finland's environmental 
administration 2002). 
 
The codes also comprise a large number of other properties that are important, but very 
difficult to check because of insufficient information on current building information 
models. Checking of them needs information about objects that are not yet included in the 
IFC exchange format. The five selected properties deal with basic building elements and 
their compliance can analyzed with most building models. As the IFC evolves the analysis 
module can be developed to check new properties. 

4.5 User Studies 

Three user studies have been done in the early stages of the work. The objective of the 
interviews was to gain a greater understanding of current processes relating to escape 
route planning in Finland. All the people interviewed were chosen from different sectors: 
the Ministry of the Environment, an architect’s office, and the Helsinki building 
inspectorate department. The Ministry of the Environment is responsible for development 
of building codes. Architects plan and design buildings according to the codes. The 
building inspectorate office approves and stores building plans.  
 
Before the questioning, this project and the Solibri Model Checker product were 
introduced to the interviewees. The questions were planned before each meeting. The 
main emphasis was in stakeholders, responsibilities, current practices, and building fire 
codes. 
 
The Ministry of the Environment is responsible for the national building code of Finland. 
The focus in the discussion was on the fire codes (Finland's environmental administration 
2002). It seemed that the regulations for escape route length and capacity were the most 
important parts of the code. The route length depends much on the method of 
measurement. Environment guide number 39 (Finland's environmental administration 
2003) is a useful handbook that helps users understand the fire codes. (Lilja 2004) 
 
The visit to an architect’s office gave a good picture of current escape route planning 
process. A chief architect is responsible for the plan. Normally, a project architect checks 
the escape routes manually without any special software. In some complex cases a fire 
safety consultant may be used. The time spent in checking of routes varies from minutes to 
days depending on the size and complexity of building. Sometimes more time is spent 
because of alterations to the design of the building and escape routes have to be checked 
again. The escape routes are documented in the master drawings. The documentation 
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contains as a minimum the borders of fire compartments, the widths of passageways and 
doors, and the number of occupants. (Isoaho 2004) 
 
The building inspectorate department approves the plans and grants a building license. 
Usually the process takes between two weeks and a few months. The master drawings are 
one of many documents that have to be delivered. Escape routes are marked on these 
drawings. The drawings are still delivered and filed on paper. Sometimes CAD software is 
used in order to help the approval process. There have been discussions about using 
building information models in the process, but it seems that the filing of the digital 
models is the most problematic issue. It is difficult to ensure that the models will be usable 
during the whole life-cycle of a building, which can be over a hundred years. (Miller et al. 
2004) 
 
The architects were the most promising users for the escape route analysis module 
implemented in this work. Many architects are skilled CAD users and they are more and 
more moving towards building information modeling. The building inspectors were the 
second most promising user group that could take advantage of the module, if building 
information models become part of the deliverables. It is hard to see how the module 
might be valuable for the Ministry of the Environment.  
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5 Requirements Engineering 

5.1 Introduction 

This chapter introduces the requirements engineering (RE) practices used and the 
requirements for the module. RE covers all of the activities involved in discovering, 
documenting, and maintaining a set of requirements for a system. The term engineering 
implies that systematic and repeatable techniques should be used to ensure that system 
requirements are complete, consistent, relevant etc (Sommerville & Sawyer 1997). The 
RE can be divided to three activities: requirements definition, requirements management, 
and acceptance testing. The activities and their relations are shown in Figure 5-1. This 
chapter focuses on the requirements definition and management. The acceptance testing, 
which validates the system against the requirements, is described in section 7.3.  
 

Requirements
Definition

Design &
Implementation &

Testing

Acceptance
Testing

Requirements Management

Requirements
Definition

Design &
Implementation &

Testing

Acceptance
Testing

Requirements Management
 

Figure 5-1 Requirements engineering process 
 
In this thesis the requirements are divided into functional and non-functional requirements. 
The functional requirements specify functions or services that the system must be capable 
of performing from a user’s point of view. The non-functional requirements describe the 
properties of the system, including usability, reliability and performance. All the 
requirements are represented later in this chapter. The requirements provided the basis for 
the design, implementation, and testing. They were also used in effort estimation and task 
planning. 
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5.2 Requirements Definition 

The purpose of the requirements definition process is to refine business requirements into 
a requirements document. The process consists of four phases: elicitation, analysis, 
representation, and validation. 
 
In the elicitation phase the requirements were discovered by interviewing architects and 
public authorities, studying building fire codes, and brainstorming. The interviews and fire 
code study are represented in Chapter 4. Some requirements were also reused from the 
existing constraint modules. 
 
In the analysis phase the collected requirements were refined into the initial set of 
requirements. Each requirement was given estimates of business value and 
implementation effort. These estimates were used in prioritization of requirements. The 
priority for a requirement was calculated simply by multiplying the business value by 
implementation effort. 
 
The requirements were documented using a spreadsheet application, which helped in the 
priority calculation. The uses cases were not used because the effort of writing was too 
great for a one-man project. The requirement tables are represented in this chapter in short 
form without information relating to prioritization. 

5.3 Requirements Management 

Requirements management is the process of managing changes to a system’s requirements 
(Kotonya & Sommerville 1998). Normally requirements management needs a remarkable 
effort. Because of the size of this project the effort spent on requirements management 
was quite small. 
 
In this project the requirements were managed by updating the requirements document. 
The document was updated when new requirements were discovered or the estimates of 
existing requirements were clarified. Improved understanding was the main reason for the 
changes. The document acted also as a priority list for the design and implementation.  

5.4 Functional Requirements 

The user requirements are listed in Table 5-1. Each of these requirements describes one 
function that the system must provide to users. The requirements do not describe user 
interface or non-functional properties. 
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Table 5-1 User Requirements 

ID Short Description 

R1 The user must be able to add exits (doors, windows, and openings). 

R2 The user must be able to remove exits (doors, windows, and openings). 

R3 The user must be able to visualize the current exits (doors, windows, and 
openings). 

R4 The user must be able to add fire compartments. 

R5 The user must be able to remove fire compartments. 

R6 The user must be able to visualize the fire compartments. 

R7 The user must be able to specify the minimal acceptable length of escape routes. 

R8 The user must be able to specify the minimal acceptable height of escape routes. 

R9 The user must be able to specify the measurement method of the escape route 
(direct linear measurement, indirect linear measurement, and wall aligned linear 
measurement). 

R10 The user must be able to specify the spaces where the escape route starts from the 
door or from the furthest corner of the space. 

R11 The user must be able to specify fixed occupancy numbers for the spaces. 

R12 The user must be able to specify occupancy number per area unit for the spaces. 

R13 The user must be able to specify a person number when the doors must open in 
the direction of escape. 

R14 The user must be able to specify the minimal acceptable number of different 
escape routes the spaces must have with different occupancy numbers. 

R15 The user must be able to specify the minimal acceptable escape route width with 
different person numbers. 

R16 The user must be able to visualize the escape routes for the selected space. 

R17 The user must be able to visualize the calculations of the analysis. 

R18 The user must be able to produce a report of the calculations. 

R19 The user must be able to get a list of reasons why the model cannot be analyzed. 

R20 The user must be able to get a list of spaces that do not have an escape route. 

R21 The user must be able to get a list of spaces that do not have an acceptable escape 
route. 

R22 The user must be able to get a list of spaces that do not have an acceptable 
number of different escape routes. 
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The system requirements are listed in Table 5-2. These requirements are similar to the user 
requirements, except that the system plays role of the user. 
 
Table 5-2 System Requirements 

ID Short Description 

R23 The system must automatically detect fire compartments. 

R24 The system must automatically detect exterior exits (door, windows, and 
openings). 

5.5 Non-functional Requirements 

The non-functional requirements are listed in Table 5-3. Each of these requirements 
describes one property that the system must provide. The main emphasis in the definition 
of these requirements was verifiability. 
 
Table 5-3 Non-Functional Requirements 

ID Short Description 

R25 The user interface must have English and Finnish localizations. 

R26 The parameters must have different default values for the imperial and the metric 
localizations. 

R27 The system with recommended hardware must be able to analyze a building with 
500 spaces in 5 minutes. 

R28 The system must be able to analyze all building models available in Solibri 
without program errors. 
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6 Design and Implementation 

6.1 Introduction 

This chapter describes the design and the implementation of the escape route analysis 
module. Design was done simultaneously with implementation. The objective was to 
implement an escape route analysis module, but in addition four general modules were 
implemented. In terms of SMC the escape route analysis module is a constraint which 
checks escape routes. The functionalities of route analysis and compartment creation were 
separated from the constraint module to their own modules, because there are other 
constraints planned that need the same functionalities. Two additional modules were 
implemented to ensure performance and low memory consumption. 
 
The design of the modules relied heavily on use of UML diagrams. Use case and class 
diagrams were modeled using the MagicDraw application (No Magic 2005). It supports 
the addition of extra information relating to object oriented programming languages and 
source code documentation. This feature – with the possibility of generating source code 
from class diagrams – helped implementation a lot. The class diagrams are represented in 
the appendix of this document. 
 
The whole implementation was carried out using the Java programming language and 
Eclipse integrated development environment (IDE) (Eclipse 2005). Testing and quality 
assurance performed during the implementation are introduced in Chapter 7. A substantial 
effort in addition to coding was spent in designing algorithms to solve geometric 
problems. The varying quality of building information models was the biggest challenge 
for the algorithms. The most notable are an algorithm for resizing areas, an algorithm for 
merging interconnected spaces, and an algorithm for creating compartments. All these 
algorithms are described in the later sections of this chapter. 
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6.2 High Level Architecture 

The current architecture of the Solibri Model Checker is divided into three clearly 
separated layers. The lowest layer is Solibri Application Engine (SAE). The next layer is 
Solibri Application Framework (SAF) and the topmost layer is the Application Layer. 
(Solibri 2001) 
 
The high level architecture of the escape route analysis module follows the architecture of 
the Solibri Model Checker. It consists of one constraint module and a few plug-in 
modules. The constraint module serves as the user interface and performs the actual 
checking of the building information model. The plug-in modules offer services in 
selected functional areas and any constraint module can use these services. The plug-in 
modules are placed in the SAF layer and the constraint module is placed in the application 
layer. Figure 6-1 shows the modules and their relations in a layer diagram. 
 

SAF Layer

SAE Layer

Application Layer

Kernel

Model Search Tree Plug-in

Compartmentation Plug-in

Escape Route Constraint

Route Plug-in

Layout Plug-in

 
Figure 6-1 High Level Architecture 
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6.3 Plug-in Modules 

6.3.1 Overview 

In the architecture of SMC plug-ins there are program modules that provide functionalities 
and optionally UI for the application. The implemented plug-ins are located in the SAF 
layer and they implement the singleton design pattern, which ensures that the class has 
only one instance and it is globally accessible (Gamma et al. 1995). This ensures 
reusability of the modules in the coming projects. The class diagrams of the plug-ins are 
represented in the appendix of this document. 

6.3.2 Model Search Tree Plug-in 

The model search tree plug-in offers fast geometric building component searches. 
Geometric searches are needed because the building components are often missing 
relations to other components. It is often the case that a space object does not have 
information about its bounding walls. The most common use case is to find all 
components that are near a component, e.g. walls that are near a space. The model search 
tree is used in route and compartmentation plug-ins. 
 
There are two commonly used tree structures that can be used for three-dimensional 
searches – octree and a binary space-partitioning (BSP) tree. The octree structure was 
chosen for this plug-in. The BSP trees have more efficient partitioning of space and search 
times are shorter (Hearn & Baker 1994). The octree was chosen instead of the BSP tree 
because its implementation is easier and construction of the octree is faster, and search 
times are short enough. In the current implementation the tree construction of a huge 
model takes less than 500ms, which is acceptable.  
 
The octree structure is based on a node with eight children. Each node corresponds to a 
cubic region of three-dimensional space (Figure 6-2). Building components are linked to 
the lowest node in the tree structure that entirely contains the three-dimensional shape of 
the component. Large components are normally in the upper nodes and smaller 
components in the lower nodes. A search of the building components starts from the root 
node and continues recursively to the child nodes. The search continues only to these 
nodes whose region intersects with the region under search. 
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Figure 6-2 Three-dimensional space divided to octants and the corresponding octree node 
 
The theoretical complexity of the octree search is O (log N) where N is the number of 
nodes in the octree. Performance of the implementation was tested with three building 
models. Building components of each model were uniformly distributed in a cubic 
formation. The formation of the biggest model had 10648 (223) components in total. Test 
results in Table 6-1 show that search time t grows almost linearly when the number of 
components C grows exponentially. Average search time for the each model is average 
time of million searches. 
 
Table 6-1 Average octree search times 

Number of Building Components, C Average Search Time, t [µs] 

125 (53) 17.6 

1000 (103) 24.9 

10648 (223) 56.8 

6.3.3 Layout Plug-in 

The layout plug-in is a module that calculates footprints and area objects of the building 
components and stores them for future use. A footprint is a closed polyline that represents 
the 2D geometry of a building component. An area object is an area generated from the 
footprint. Footprints and area objects are often needed in two-dimensional geometric 
analyses of route and compartmentation plug-ins. This is one of reasons why the handling 
of these objects is centralized to a separate plug-in. The other reason is to store created 
objects into a single cache, which improves performance and reduces memory 
consumption. 
 
The layout plug-in has also services for handling area objects. The handling of area 
objects is based on Boolean operations of constructive area geometry (CAG). The CAG 
method creates a new area object by applying the binary union, difference, intersection, or 
exclusive-or (XOR) operation to two area objects. The Boolean operations used in CAG 
are demonstrated in Figure 6-3. The CAG is a part of the Java 2D API (Application 
Program Interface) and it can be used in the plug-in implementation without any third 
party library. The CAG operations are implemented in the Area class (J2SE 2005). 

3 4 7 

1 2 3 4 5 6 7 8 
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Figure 6-3 Boolean operations in CAG 
 
The documentation of the Java 2D API does not give an indication of the complexity of a 
single CAG operation, but it should be some where between O(E log E) and O(E2), where 
E is the number of edges in operands. The average times of the empirical complexity test 
shown in Table 6-2 confirms the hypothesis. The test performed 10000 CAG operations 
for each operand pair. The number of edges E in polygonal operands was increased 
exponentially from 4 to 1024. The average times increased only slightly faster than the 
number of edges, which means that the complexity for Java 2D CAG operations is 
probably O(E log E). 
 
Table 6-2 Average times for CAG operations of the Java 2D API 

Edges, E Union, t [µs] Difference, t [µs] Intersection, t [µs] Xor, t [µs] 

4 15,6 11,0 22.2 21,1

8 29,9 29,9 31.1 21,7

16 64,1 34,6 38.8 32,5

32 91,9 57,5 94.3 61,0

64 203,2 120,7 195.5 98,8

128 356,7 244,8 356.5 231,1

256 777,6 517,5 693.3 504,7

512 1610,2 963,0 1688.5 975,0

1024 2910,5 1958,0 3127.9 2407,6

 
The most essential functionalities where the CAG is used are increasing and decreasing 
the size of an area or a two-dimensional polygon. There are some trivial and efficient 
algorithms with O(V) complexity, where V is the number of vertices in the polygon. These 
algorithms use vector mathematics and produce good results when the polygon is convex 
(a convex polygon contains all the line segments connecting any pair of its points), but 
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low quality results when the polygon has sharp corners, thin regions, or holes. A sharp 
corner should not expand to infinite as its angle approaches zero when the polygon is 
increased in size. A thin region should divide the polygon into two polygons when the 
polygon is decreased in size. Small holes should disappear when the polygon is increased 
in size. Implementing resizing with CAG is not as efficient, but the results are very good 
regardless of the geometry of polygon. 
 
The algorithm implemented in this thesis is displayed in Figure 6-4. It can be divided to 
four phases: 
 

1. An area object is created from the polygon. 
2. The line segments of the polygon are iterated and area objects are created for 

each segment and sharp corner. The size of each area object depends on the 
required increment of the resize. 

3. The area objects created in the previous phase are added (union) or subtracted 
(difference) from the original area object. 

4. A new polygon is created from the resulting area object. 
 
 

1. 2. 3. 4.1. 2. 3. 4.

 
Figure 6-4 Method for increasing and decreasing the size of a polygon using CAG 
 
Phases 1 and 4 are simple conversions between area and polygon objects. The complexity 
of one conversion is O(E). Phase 2 has one conversion per each edge and sharp corner. 
The complexity of each conversion is O(1), because there are not more than 6 edges per 
created polygon. The phase 3 has one CAG operation per each area object created in phase 
2. If the complexity of CAG operation is O(E log E), then the complexity of the algorithm 
is 
 

).log()()log()()1()()( 2 EEOEOEEOEOOEOEO =+++     6.1 
 
The footprints of the building components are often rectangular. The algorithm is 
optimized to handle rectangular polygons with a simple algorithm. The algorithm just 
moves the four corners inwards or outwards using vector mathematics. The complexity of 
this kind of algorithm is O(1). 
 
The layout plug-in also offers functionality for calculating the area value of an area object. 
It is needed in the compartmentation plug-in when the sizes of area objects are compared. 
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The Java 2D API does not include this functionality. The area values are calculated using 
the method for polygon area presented in the Computational Geometry in C (O’Rourke 
1998). Let a polygon P have vertices v0, v1,…,vn-1 and let p be any point in the plane. Then 
the area is  
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If vi = (xi, yi), this expression is equivalent to the equation 
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The complexity of this algorithm is O(E), where E is the number of edges in the polygon. 

6.3.4 Route Plug-in 

The route plug-in analyses the building information model and creates a route graph. This 
is the most complex and time consuming phase in the escape route analysis. It is done only 
once per building model, because the plug-in stores the graph into the building model 
when the user saves the model and loads it when the user opens the saved model. The 
route graph is used in route queries, which are done by the constraint module. The plug-in 
calculates the shortest route using the well known Dijkstra’s shortest path algorithm 
(Dijkstra 1959). The route graph is created by analyzing the locations and geometries of 
the building components. This can be divided into five phases: 
 
1. Finding building elements that connect spaces 
All doors, openings, and stairs that lead to spaces are found. This is done by searching 
doors and stairs near the spaces using the model search tree plug-in. The locations of these 
candidates are still inspected closer before choosing because (for instance) a door can be 
near the space without being in direct contact with the space. 
 
2. Finding interconnected spaces 
Interconnected spaces are connected directly to each other without any walls between 
them (Figure 6-5). First spaces and walls near the spaces are searched using the model 
search tree plug-in. Then the segments of the space boundary that are not covered by walls 
are compared to corresponding segments of the spaces close to them. If common segments 
are found between the spaces, they are interconnected. 
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Figure 6-5 Three interconnected spaces, Piparminttu model, Skanska Oy 
 
3. Merging interconnected spaces 
Interconnected spaces are merged before a route graph of the spaces can be created. This 
phase is skipped if the space is not interconnected. Merging is done using CAG by 
combining the space area objects with an area created from the common segments (Figure 
6-6). The common segments are found in the previous phase. This algorithm produces 
good results even when the spaces have narrow gabs between them or spaces are 
intersecting. 
 

1. 2. 3.1. 2. 3.

 
Figure 6-6 Method for merging interconnected spaces using CAG 
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4. Creating a graph for spaces 
For this operation a space area object, connected doors, and stairs are needed as the source 
information. The idea is to create a graph of the area object that contains all routes 
between any door and stairs. At first the space area is converted to polygons (an outer 
boundary and possible holes), which are decomposed to a list of directed line-segments. 
The line-segments are used for creation of route segments inside the space area. In total, 
five different types of line segments are created. This is done using vector mathematics. 
All segments are split so that the resulting segments do not cross any other segment. The 
segments are split using a “brute force” algorithm, which tests each segment pair for 
intersection. The complexity of the algorithm is O(S2), where S is the number of segments, 
since there are 
 

2/)1(1...)2()1( −=++−+− SSSS        6.4 
 
different segment pairs. There is a faster and well-known “Bentley-Ottmann Algorithm” 
(Bentley & Ottmann 1979), which computes intersections in O(S log S) time. It is not 
needed because the bottleneck is currently in algorithms that use CAG. The split segments 
that are located outside the area are discarded. The remaining segments form the graph. 
The graph edges and nodes are seen in the graph testing window in Figure 6-7. 
 

 
Figure 6-7 Route edges in ascending priority order in testing window: red, magenta, green, cyan, and 
blue 
 
In the testing window the edges are colored by cost. The edges with higher cost have a 
penalty in route calculation. This way routes use edges that have smaller cost when 
possible. The costs are designed so that the route goes along the centre line of the space 
between the center points of the doors. This way the routes are acceptable for fire code 
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compliance studied in paragraph 4.4. Normally the route goes from a door to the magenta 
centre line using the red segments. The red edges lead to the doors and have the lowest 
priority. The magenta edges are located in the centre of the walls and have the next lowest 
priority. The green edges are parallel and cyan edges perpendicular to the walls. The green 
edges have lower priority than cyan. The blue edges have the highest priority and are 
located in the boundary of the area. The blue edges are seldom used by routes. 
 
5. Building the final route graph 
The route graph is created by combining the space graphs into a single master graph. To 
assure small memory consumption and fast route queries, only the edges of the routes 
between doors and stairs are added. These edges are searched by Dijkstra’s shortest path 
algorithm (Dijkstra 1959). The other edges are discarded. 

6.3.5 Compartmentation Plug-in 

Buildings are often divided into compartments that serve different purposes. 
Compartments are two-dimensional wall bounded areas. The compartmentation Plug-in is 
used to create and modify compartments for different purposes. This is needed because 
current building information models seldom have information about compartments. The 
plug-in can handle three different types of compartments: fire compartments, gross area 
compartments, and secure compartments. Escape route analysis uses gross area and fire 
compartments. Gross area compartments are bounded by exterior walls and fire 
compartments are bounded by exterior walls and fire walls.  
 
The compartmentation plug-in has a user interface for creating and handling 
compartments (Figure 6-8). The UI has tool buttons for creating and editing compartments 
and a tree control for browsing the compartments and bounding walls. The creation of 
compartment is a semiautomatic process. The user chooses the compartment type and the 
method for selecting walls. The plug-in analyses the selected walls and creates the 
compartments bounded by the walls. The compartments selected by the user are visualized 
in 3D. The user can modify the compartments by adding or removing bounding walls. 
After these operations the plug-in automatically updates the affected compartments. 
 

 35



 
Figure 6-8 Compartmentation View 
 
Compartment creation from the set of walls is challenging task. The geometries of walls 
are inconsistent, there can be gaps between walls, and the walls sometimes intersect each 
other. Constructive area geometry (CAG) can be used to solve these problems. The 
algorithm is presented in Figure 6-9 is following: 
 

1. The bottom area objects of the walls are increased in size using the method of the 
layout plug-in described in Section 6.3.3. 

2. The increased area objects are combined into one area object using the CAG union 
operation. 

3. a) Outer compartments (gross areas) are extracted from the outer boundary of the 
combined area that is decreased in size. 
b) The inner compartments (fire compartments) are extracted from the holes of the 
combined area that are increased in size. 
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Figure 6-9 Method for creating compartments from a set of walls using CAG 
 
The bounding walls of the compartment are the walls whose enlarged bottom area 
intersects with the compartment area. The intersection is tested with the intersection 
operation of CAG. If the result of intersection is an empty area there is no intersection and 
if the result area is smaller than the area of the increased bottom area there is a partial 
intersection. The sizes of area objects can be compared by comparing their calculated area 
values obtained from the layout plug-in. 

6.4 Constraint Module 

6.4.1 Overview 

Constraints are small program modules that can check a building information model from 
one or more aspects. Constraints are parametric and they can be configured to check the 
model against different requirements. The user can configure the parameters in the 
constraint parameter view (Figure 6-11). Problems found in checking are displayed in a 
tree of the constraint results view (Figure 6-12) where they are organized by category. The 
constraint may also have tools, which are like small applications that support the 
constraints. Because of the nature of constraint tools the appearance and functionality 
varies considerably between the different constraints. Typically constraint tools are used 
for advanced visualization of the checking results. Tools are located in the constraint tools 
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view (Figure 6-14). In addition to checking the model, constraints have the ability to 
report information from the model. (Solibri 2004) 

6.4.2 Checking 

The escape route constraint module is responsible for checking the model against the 
escape route requirements and representing the checking results. Since most of the 
functionality needed for the checking is located in plug-ins, the constraint module can 
focus on analyzing and representing the results. 
 
Model checking has three phases: pre-check, check, and post-check. In the pre-check the 
existence of fire compartments and exit doors are checked. Check method is called once 
for every space component in the building. Figure 6-10 shows the flow of the check 
method. The last phase contains only the checking of route widths. The widths cannot be 
checked earlier because the information for all the routes is needed. The information is 
collected during the check phase. 
 

Create issue: Maximum travel distance is not specified for the space

Create issue: Travel distance from the space is too long

Create issue: Occupancy is not specified for the space

Create issue: The space has not enough routes

Create issue: The space has no routes to exits

Create issue: Too low route  components

EscapeRouteConstraint::check

No routes

Occupancy not specified

Maximum travel distance not specified

Not enough routes

Too long travel distance

Too low route

One or more routes

 
Figure 6-10 Flow chart of the check method 
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6.4.3 Constraint Parameter View 

The constraint module must be configurable because fire codes differ from code to code. 
All the fire codes examined have at least the following requirements: 
 
• Minimum number of escape routes 

• Formulas for determining the occupant counts of spaces  

• Maximum travel distance (usually depends on the number of routes) 

• Minimum width of escape route (usually depends on the number of occupants) 

• Minimum height of escape route 

The parameter view is displayed in Figure 6-11. It has one list parameter, three table 
parameters, and one numeric parameter. The list parameter Exit List contains exits at the 
termination of an escape route from a building. The list is building-specific and the user 
must always fill the list with the exits of the current building. The first table parameter is 
General Requirements. Each row in the table contains data for one usage type. The usage 
type of the row is defined in the first cell and the data in the rest. The second table 
parameter Space Requirements defines the usage types of the spaces. One row in the table 
can define the usage type of a single space or a set of spaces. The matching spaces are 
identified by type, name, and number. It is also possible to set a fixed occupant count for a 
space or a set of spaces by filling the Occupant Count of the row. This is designed for 
spaces where the maximum number of occupants is known. The third table parameter, 
Minimum Exit Passageway Width, defines the minimum widths for escape routes. The 
first cell in the row tells for what number of occupants the requirements are. The minimum 
total widths and single widths are in the rest of the cells. The value of the last parameter 
Minimum Exit Passageway Height is the minimum height of the escape routes. 
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Figure 6-11 Constraint parameter view 

6.4.4 Constraint Results View 

Constraint results are represented to the user in a tree component in the constraint results 
view. The tree consists of category, issue, and building element nodes. The purpose of a 
category is to group a set of similar issues. An issue describes a problem which is related 
to a set of building elements. The different types of nodes are seen in Figure 6-12.  
 

 
Figure 6-12 Constraint results view 
 
Table 6-3 contains all the categories and issues that the result tree of the escape route 
constraint can have. The varying parts of the issue descriptions are marked with “<” and 
“>” marks. 
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Table 6-3 Categories and issues of the escape route constraint 

Category name Issue description 

Exits are not specified. Exits are specified in constraint 
parameters. 

Occupancy is not specified for the space <space 
identifier>. Occupancies are specified in constraint 
parameters. 

Maximum travel distance is not specified for the space 
<space identifier>. Travel distances are specified in 
constraint parameters. 

Missing information 

The model does not have any fire compartments. They 
can be added to the model from Window menu 
(Window -> Views -> Compartmentation). 

No routes to exits Space <space identifier> has no routes to exits. Check 
that all exits are added to the constraint parameters. 

Not enough routes to exits Space <space identifier> has <number> escape routes. 
There should be at least <minimum number> routes. 

Travel distance is too long Travel distance from space <space identifier> to safe 
place is <length>. The maximum travel distance is 
<maximum length>. 

Exit passageway is too low Height of space <space identifier> is <height>. The 
minimum exit passageway height is <required height>. 

Width of door <door identifier> is <width>. The 
minimum door width for <number> occupants is 
<required width>. 

Width of space <space identifier>. The minimum 
passageway width for <number> occupants is <width>. 

Total door width is <width>. The minimum total door 
width for <number> occupants is <required width>. 

Exit passageway is too narrow 

Total passageway width is <width>. The minimum total 
passageway width for <number> occupants is <required 
width>. 
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6.4.5 Constraint Tools View 

The constraint results view shows the problems found in checking. Only routes that have 
something wrong are shown. The constraint tools panel of the escape route constraint is 
designed so that the user can see any route, fire compartment or occupant count visualized 
in the 3D view (Figure 6-13). 
 

 
Figure 6-13 Visualization of the escape route analysis results 
 
The tools panel that controls the visualization consists of checkboxes and a tree (Figure 
6-14). The checkboxes in the user interface are used to specify the visualizations that are 
shown when a node in the tree is selected. The storeys are root nodes of the tree. The 
storeys have spaces as child nodes and the spaces have routes as child nodes. The user can 
see all the routes on one storey in the 3D view (Figure 6-13) by selecting a storey node in 
the tree. The visualization of other kind of nodes works in a similar way. 
 

 
Figure 6-14 Constraint tools view 
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7 Testing and Quality Assurance 

7.1 Introduction 

This chapter concentrates on the testing and quality assurance of the module. The module 
was tested using automatic unit and module testing. The module was evaluated against the 
requirements using manual acceptance testing. The main emphasis was in automatic 
testing. Automatic testing proved to be very valuable during the implementation of this 
project and is now used in all projects. Several times it helped to find and locate critical 
errors. It also turned to be very useful in refactoring and debugging. Currently automatic 
testing is an important part of software process in Solibri. Automatic testing has also 
increased the number of tests written by coders and changed the attitude to testing. 

7.2 Automatic Testing 

Unit and module tests are run automatically in a separate testing environment. The testing 
environment consists of a PC with the testing framework installed. The PC must be 
connected to the intranet because all the testing material is there. The testing framework 
can be installed on the following operating systems: Microsoft Windows 2000/XP and 
Apple Mac OS X. The central software of the framework is Apache Ant, which is a Java-
based build tool that can also run JUnit tests (Apache Ant 2005). The Ant reads and 
executes XML-based (EXtensible Markup Language) configuration files. 
 
The test is normally run once a day. The test script checks out the latest source codes and 
test case codes from the version control system and compiles them. After the tests are run, 
the results are collected and published on the Solibri intranet. Ant runs also a small Java 
application which writes an automatic testing summary table. The summary table shown 
in Figure 7-1 contains links to all test reports and numeric data such as the total number of 
test cases, number of passed and failed test cases, and the total testing time in seconds. It 
can be seen in Figure 7-1 that on 6th July source code that committed to the version 
control was reason to a failure. The source code was fixed the next day. 
 

 43



 
Figure 7-1 Ten topmost rows of the automatic testing summary table (August 2, 2005) 
 
The unit tests are normal JUnit test cases that test classes of the modules. The module tests 
are extended JUnit test cases. The test cases have helper methods, which make them easy 
and fast to write. The helper methods are designed to decrease the bad smells that are 
specific for test code (van Deursen et al 2001). The following simple module test assures 
that the escape route module does not find any problems with a faultless building model. 
 
public void testRoutes28() { 
    String modelName = "179/routes28.ifc"; 
    String csetName = "179/EscapeRoutes.cset"; 
    init(modelName, csetName); 
 
    Smodel model = (SModel)ModelChecker.getModelHandlingPlugin().getCurrentModel(); 
    EscapeRouteConstraint cons = (EscapeRouteConstraint) findConstraint(0); 
 
    // Create fire compartments 
    CompartmentationPlugin.getInstance().createCompartments( 
    SFireCompartment.class, CompartmentationPlugin.ALL_WALLS_METHOD); 
 
    // Set exits 
    addExit(model, cons, "2ZkPW8$Cf50ubLED_ygE$Y"); 
 
    // Run constraint set 
    runCset(); 
 
    // Check that there are no problem found in checking 
    Collection cats = cons.getCategories(); 
    assertNotNull("Categories are null", cats); 
    assertEquals("Wrong number of categories", 0, cats.size()); 
} 

7.3 Acceptance Testing 

Acceptance testing is conducted to determine whether a system satisfies its acceptance 
criteria. It normally is normally done by actual users. In this thesis the software is 
validated by the author against the requirements. The system is accepted if it satisfies all 
requirements with the highest priority and half of the requirements with medium priority. 
Two real life building models were used in the validation. The first building was an office 
building designed with Autodesk ADT (Figure 7-2) and the second was a housing block 
designed with Graphisoft ArchiCAD (Figure 7-3). 
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Figure 7-2 Digitalo model in SMC, Senaatti-kiinteistöt 
 

 
Figure 7-3 Piparminttu model in SMC, Skanska Oy 
 
As the result of acceptance testing the system satisfies all but six medium or low priority 
requirements. These six requirements are listed in Table 7-1. This means that the system 
satisfies its acceptance criteria. 
 
Table 7-1 Requirements that the system does not satisfy at the moment 

ID Short Description 

R9 The user must be able to specify the measurement method of the escape route 
(direct linear measurement, indirect linear measurement, and wall aligned linear 
measurement). 

R13 The user must be able to specify a person number when the doors must open to the 
direction of escape. 

R14 The user must be able to specify the minimal acceptable number of different escape 
routes the spaces must have with different occupancy numbers. 

R18 The user must be able to produce a report of the calculations. 

R23 The system must automatically detect fire compartments. 

R24 The system must automatically detect exterior exits (door, windows, and openings). 
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7.4 Quality Assurance 

The quality of the source code was measured using CCCC tool (C and C++ Code 
Counter). Despite the name, CCCC also analyzes Java code. It generates a report on 
various metrics of the code. The supported metrics include lines of code, lines of code per 
line of comment, McCabe's cyclomatic complexity, and metrics related to object oriented 
design. 
 
McCabe’s cyclomatic complexity is the most widely used software complexity metrics. It 
measures the number of linearly-independent paths through a program module. In this 
thesis all source code was refactored so that the maximum complexity number for each 
Java class was 20 and 10 for each method in the classes. The complexity number was also 
useful for designing unit testing so that the focus is on the methods with higher risk. 
 
The other metrics measured the classic characteristics of object oriented design: visibility, 
inheritance, reuse, and coupling. The visibility metric revealed the classes that had too 
many methods and fields accessible to other objects. The inheritance metric showed the 
depth of inheritance tree. The reuse metric counted the number of direct inherited objects. 
The coupling metric was the most important of these metrics. It helped to spot classes that 
had too high coupling. 
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8 Conclusions and Future Work 

8.1 Overview 

This thesis has been carried out at Solibri Oy. The aim of this thesis was to define the set 
of information that is needed to automatically perform escape route analysis, the methods 
for performing the analysis, and the means of presenting the results of the analysis. The 
thesis has of two parts: study and work. 
 
The study of the thesis concentrates on building information modeling (BIM) and escape 
route analysis. The study is mainly based on literature and interviews. BIM is becoming 
approach that is widely adopted in the AEC industry. BIM offers many benefits and totally 
new and powerful ways of working over the building life cycle. Implementing BIM is 
challenging, since it requires a major paradigm shift from drawing-based to model-based 
operations. One of the new use cases is automated building code checking. The thesis 
studies regulations of fire codes that concern escape routes.    
 
The work consists of the fundamental activities of software processes: definition, design, 
implementation, and testing. The activities were carried out simultaneously. The definition 
consisted of common activities of requirements engineering. The focus in the work was on 
the design and implementation. Automatic testing had an important role in testing. Finally, 
the system was acceptance tested against the requirements. 

8.2 Results 

As the result of this work an escape route analysis module was implemented and included 
into the Solibri Model Checker product. The work shows that current building information 
models have adequate information for automatic validation of escape routes against the 
most essential regulations of building fire codes. High similarity between the regulations 
in different geographic areas made it possible to create a common user interface that 
allows the use of different fire codes as input for the analysis. The analysis results in a list 
of problems that violate the regulations. The users can browse this list and visualize 
problematic routes in the 3D view. 
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The escape route analysis module has already been used in some ongoing building 
projects. Typically the module has revealed some modeling errors such as missing doors 
or spaces. These kinds of errors are equally problematic for almost any other use of the 
building model. 
 
One of the biggest challenges in the analysis was the varying quality of the building 
information models. The problem was solved by analyzing the geometry and location of 
building elements instead of relying on relations between them. This required a set of 
efficient geometry algorithms that give reliable and high quality results. The three most 
notable algorithms developed are an algorithm for increasing and decreasing polygons in 
size, an algorithm for merging interconnected spaces, and an algorithm for creating 
compartments. Constructive area geometry (CAG) was the key technology in these 
algorithms in order to obtain high quality results. 
 
The acceptance testing carried out at end of the project showed that the module meets the 
requirements set. The module has still small problems in certain areas. These problems 
can be solved when the module is developed further. 
 
An automatic testing system developed to test the modules and algorithms proved to be 
valuable. It is run every night and reports possible problems that changes to source code 
have caused. The testing system is now important part of the software process in Solibri 
Oy. 

8.3 Future Work 

The results of the thesis and feedback from the users have brought out some interesting 
ideas for further development in escape route analysis. More ideas can be generated by 
systematically collecting feedback from users or by organizing a field study. 
 
Accessibility is one of the potential areas into which the module could be expanded. 
Building codes often have separate regulations for accessibility. The accessibility codes 
contain (for instance) regulations that concern usability of a wheel chair in a building. 
 
In addition to these new ideas, there are some requirements defined that were not 
implemented. The development of the module continues by implementing the most 
valuable of the remaining requirements and by fixing possible problems. 
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Appendix 

This appendix contains the UML class diagrams of the plug-in modules. The diagrams are 
generated from the source codes using MagicDraw UML tool (No Magic 2005). All 
methods and attributes related to user interface are hidden manually. Constructors and 
private methods are not show in the diagrams. There are many external types used in 
classes that are not defined in the diagrams. Most of them are defined in Java 3D 1.3.2 
(Java3D 2005) or J2SE 5.0 (J2SE 2005) documentations. The rest types such as 
DefaultPlugin and IComponent are part of Solibri Application Engine or Solibri 
Application Framework. 
 

LayoutPlugin
-areaMap : HashMap
-footprintMap : HashMap

+areaToPolygons( area : Area, polygons : ArrayList, holes : ArrayList )
+getArea( component : IComponent ) : Area
+getAreaCopy( component : IComponent ) : Area
+getFootprint( component : IComponent ) : Point[]
+getFootprintCopy( component : IComponent ) : Point[]
+polygonToArea( polygon : Tuple3d[] ) : Area
+resizeArea( area : Area, resize : double )

LayoutPluginUtils

~createArea( entity : SEntity ) : Area
~createFootprint( entity : SEntity ) : Point[]

DefaultPlugIn

1

1

 
Diagram 1 Class diagram of the layout plug-in 
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Octree
-maxSubdivisionLevel : int
-nEntities : int = 0
-root : OctreeNode

~add( entity : SEntity ) : void
~build( entities : Collection ) : void
~remove( entity : SEntity ) : void
~search( lower : Point3d, upper : Point3d, filter : EntityFilter, result : Collection )

ModelSearchTreePlugin
-octree : Octree

+search( lower : Tuple3d, upper : Tuple3d, tolerance : double ) : SEntity[]
+search( lower : Tuple3d, upper : Tuple3d, entityClass : Class, tolerance : double ) : SEntity[]
+search( entity : SEntity, entityClass : Class, tolerance : double ) : SEntity[]
...

OctreeNode
-data : ArrayList
-lower : Point3d
-negXnegYnegZ : OctreeNode
-negXnegYposZ : OctreeNode
-negXposYnegZ : OctreeNode
-negXposYposZ : OctreeNode
-posXnegYnegZ : OctreeNode
-posXnegYposZ : OctreeNode
-posXposYnegZ : OctreeNode
-posXposYposZ : OctreeNode
-upper : Point3d

~add( lower : Point3d, upper : Point3d, entity : SEntity ) : void
~getData( lower : Point3d, upper : Point3d, result : Collection, filter : EntityFilter ) : void
~remove( entity : SEntity, center : Point3d ) : void

OctreeNodeData
~bounds : Bounds
~entity : SEntity

DefaultPlugIn

10..81

*

1

1

1
1

 
Diagram 2 Class diagram of the model search tree plug-in 

 B



RouteGraph

+addAllEdges( edges : Collection ) : boolean
+addEdge( edge : RouteEdge ) : boolean
+findLongestPathBetween( startVertex : Object, endVertices : HashSet ) : RouteEdge[]
+findShortestPathBetween( startVertex : Object, endVertex : Object ) : RouteEdge[]
+findShortestPathsBetween( startVertex : Object, endVertices : HashSet ) : HashMap
+getShortestRoute( start : RoutePoint, end : RoutePoint ) : Route
+getShortestRoutes( start : RoutePoint, ends : RoutePoint[] ) : Route[]

GraphComponent
-endPointsMap : HashMap
-graph : RouteGraph
-upToDate : Boolean

+clear() : void
+getEndPoints( c : IComponent ) : RouteEndPoint[]
+getGraph() : RouteGraph
+GraphComponent()
+isUpToDate() : boolean
+setEndPoints( c : IComponent, points : RouteEndPoint[] ) : void
+setGraph( graph : RouteGraph ) : void
+setUpToDate() : void

RoutePlugin
-graph : GraphComponent = null
-routeUtils : RouteUtils = new RouteUtils(this)
-spaceUtils : SpaceUtils = new SpaceUtils(this)
-stairUtils : StairUtils = new StairUtils()

+calculateRouteGraph() : void
+clearRouteGraph() : void
-getAllExitEntities( model : Model ) : Set
+getEndPoints( component : IComponent ) : RouteEndPoint[]
~getRouteUtils() : RouteUtils
+getShortestRoute( start : RouteEndPoint, end : RouteEndPoint ) : Route
~getStairUtils() : StairUtils

Route
-edges : RouteEdge []
-length : double

+createEdge( sourceVertex : Object, targetVertex : Object ) : Edge
+getEdges() : RouteEdge[]
+getLength() : double
+setEndPoints( component : IComponent, endPoints : RouteEndPoint[] ) : void

RoutePoint

+RoutePoint( point : Point )

RouteEdge
+DOOR_PRIORITY : int = 1
+CENTER_PRIORITY : int = 2
+COLLINEAR_PRIORITY : int = 3
+NORMAL_PRIORITY : int = 4
+EDGE_PRIORITY : int = 5
#length : double
#weight : double
-priority : int
-source : RoutePoint
-target : RoutePoint

+containsVertex( v : Object ) : boolean
+getLength() : double
+getPriority() : int
+getSource() : Object
+getTarget() : Object
+getWeight() : double
+setWeight( weight : double ) : void

RouteGraphEdge
-components : IComponent []
-routeEdges : RouteEdge []

+getComponents() : IComponent[]
+getRouteEdges() : RouteEdge[]RouteEndPoint

-component : IComponent

+getComponent() : IComponent

DefaultPlugin

2

1..*

* 1..*

1 *

1

1

1

0..1

 
Diagram 3 Class diagram of the route plug-in 
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CompartmentationUtils

~addCompartmentWalls( walls : Set, compartmentClazz : Class, message : String ) : SCompartment[]
~addWallsToCompartment( compartment : SCompartment, wallsToAdd : Collection ) : void
~getSurroundingWalls( spaces : Collection ) : Set
~removeWallsFromCompartment( compartment : SCompartment, wallsToRemove : Collection ) : void
~updateCompartments( compartmentClazz : Class, existingCompartments : Collection, wallsToAdd : Set, wallsToRemove : Set ) : Collection

CompartmentationPlugin
+@NONE_METHOD : int = 0
+@EMPTY_METHOD : int = 1
+@SELECTED_WALLS_METHOD : int = 2
+@SELECTED_SPACES_METHOD : int = 3
+@ALL_WALLS_METHOD : int = 4
+@ALL_SPACES_METHOD : int = 5
-utils : CompartmentationUtils

+addWallsToCompartment( compartment : SCompartment, walls : Collection ) : void
+createCompartments( clazz : Class, method : int ) : SCompartment[]
+getAllCompartments() : SCompartment[]
+getIntersectionCompartments( component : IComponent, compartmentClass : Class, intersectionRatio : double ) : Collection
+removeWallsFromCompartment( compartment : SCompartment, walls : Collection ) : void

DefaultPlugin

1

1

 
Diagram 4 Class diagram of the compartmentation plug-in 
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